Production-Inventory Systems: Modeling, Forecasting and Control

Daniel E. Rivera

Control Systems Engineering Laboratory
School for the Engineering of Matter, Transport and Energy
Ira A. Fulton Schools of Engineering
Arizona State University

http://csel.asu.edu
Production-Inventory Systems: modeling, CONTROL, and Forecasting

Daniel E. Rivera

Control Systems Engineering Laboratory
School for the Engineering of Matter, Transport and Energy
Ira A. Fulton Schools of Engineering
Arizona State University

with special acknowledgments to:
Jay D. Schwartz, Intel Corp.
Naresh N. Nandola, ABB
Outline

• Dynamical Model of a Production-Inventory System
• Control Strategies:
 • IMC-PID and 2DoF Feedback-Only IMC
 • 3DoF Combined Feedback/Feedforward IMC
 • Model Predictive Control (MPC)
 • Improved MPC algorithm / Hybrid MPC
• Control-relevant Demand Modeling / Demand Forecasting
• Summary and Conclusions
Production-Inventory System

\[y(t) = \frac{Ke^{-\theta s}}{s} u(s) - \frac{e^{-\theta_F s}}{s} d_F(s) - \frac{1}{s} d_U(s) \]

Integrating System with Delays
Semiconductor Manufacturing Supply Chain Management

Fabrication/Sort
- Nonlinear Throughput Time (~Weeks)
- Stochastic output

Assembly/Test
- Linear Throughput Time (~Days)
- Stochastic output

Finish/Pack
- Constant Throughput Time (~Shifts)
- Stochastic output

Demand Factors
- Stochastic demand
- Inaccurate forecasts
Global Warming/Climate Change

- From National Geographic Magazine
 (http://ngm.nationalgeographic.com/big-idea/05/carbon-bath)
Parental function $PF(t)$ is built up by providing an intervention $I(t)$ (frequency of home visits), that is potentially subject to delay, and is depleted by potentially multiple disturbances (adding up to $D(t)$).

\[PF(t + 1) = PF(t) + K_I I(t - \theta) - D(t) \]

Internal Model Control (IMC) Design Procedure

• Step 1 (Nominal Performance): Obtain an H_2 (ISE)-optimal $q(s)$
 - An external input form is specified (e.g., step or ramp)
 - Closed-form solution for $q(s)$ is obtained
 - Resulting controller is stable and causal

• Step 2 (Robust Stability and Performance)
 - Augment the IMC controller from Step 1 with a filter, $f(s)$.
 - Proper choice and tuning of the filter ensures that:
 - the final controller $q(s)$ is proper.
 - the control system achieves stability and performance under uncertainty.
IMC-PID Tuning Rules

\[p(s) = \frac{K e^{-\theta s}}{s} \]
\[\tilde{p}(s) = \frac{K(-\frac{\theta}{2}s + 1)}{s\left(\frac{\theta}{2}s + 1\right)} \]
\[q(s) = \frac{s}{K(\lambda s + 1)} \]

Representing the delay with a first-order Padé approximation and applying the IMC design procedure leads to the PID with filter controller.

\[c(s) = K_c \left(1 + \frac{1}{\tau I s} + \tau_D s \right) \frac{1}{(\tau_F s + 1)} \]
\[K_c = \frac{3\theta + 4\lambda}{K(\theta^2 + 4\theta\lambda + 2\lambda^2)}, \quad \tau_I = \frac{3}{2}\theta + 2\lambda \]
\[\tau_D = \frac{\theta^2 + 2\theta\lambda}{3\theta + 4\lambda}, \quad \tau_F = \frac{\theta\lambda^2}{\theta^2 + 4\theta\lambda + 2\lambda^2} \]

IMC-PID Controller Response

\[K = 1 \quad \theta = 5 \quad \theta_d = 0 \quad \lambda = 5 \]
Two Degree-of-Freedom (2DoF) Feedback-Only IMC

\[p(s) = \frac{K e^{-\theta s}}{s} \]

\[\tilde{p}(s) = \frac{K e^{-\theta s}}{s} \]

No approximation is applied to the plant delay.

\[q_r(s) = \frac{s}{K} \frac{1}{(\lambda_r s + 1)^{n_r}} \]

\[q_d(s) = \frac{s(\theta s + 1)}{K} \frac{(n_d \lambda_d s + 1)}{(\lambda_d s + 1)^{n_d}} \]

2DoF Feedback-Only IMC

\[K = 1 \quad \theta = 5 \quad \theta_d = 0 \quad \lambda_r = 1 \quad n_r = 2 \quad \lambda_d = 2 \quad n_d = 3 \]
3DoF Combined Feedback/Feedforward IMC Control

\[p(s) = \frac{Ke^{-\theta s}}{s} \]
\[\tilde{p}(s) = \frac{Ke^{-\theta s}}{s} \]
\[p_d(s) = \frac{e^{-\theta_F s}}{s} \]
\[\tilde{p}_d(s) = \frac{e^{-\theta_F s}}{s} \]
\[q_r(s) = \frac{s}{K} \frac{1}{(\lambda_r s + 1)^{n_r}} \]
\[q_d(s) = \frac{s(\theta s + 1)}{K} \frac{(n_d \lambda_d s + 1)}{(\lambda_d s + 1)^{n_d}} \]
\[q_F(s) = \frac{e^{-(\theta_F - \theta_d - \theta)s}(n_F \lambda_F s + 1)}{K (\lambda_F s + 1)^{n_F}} , \quad \theta_F \geq \theta + \theta_d \]

3DoF Combined Feedback/Feedforward IMC Control

\[K = 1 \quad \theta = 5 \quad \theta_d = 0 \quad \theta_F = 10 \]

\[\lambda_r = 1 \quad n_r = 2 \quad \lambda_F = 1 \quad n_F = 3 \quad \lambda_d = 2 \quad n_d = 3 \]
Model Predictive Control (MPC)

\[
\begin{align*}
\min_{\Delta u(k|k) \ldots \Delta u(k+M-1|k)} & \sum_{\ell=1}^{P} Q_e(\ell)(\hat{y}(k+\ell|k) - r(k+\ell))^2 + \sum_{\ell=1}^{M} Q_{\Delta u}(\ell)(\Delta u(k+\ell - 1|k))^2 \\
\text{Keep Inventories at Planning Setpoints} & \quad \text{Penalize Changes in Factory Starts}
\end{align*}
\]
IMC/MPC Comparison

\[\theta = 5, \ P = 20, \ M = 10, \ Q_e = 1, \ Q_{\Delta u} = 10 \]

- **Net Stock**
 - MPC
 - IMC

- **Factory Starts**
 - MPC
 - IMC

- **Customer Demand**
 - Actual Demand
 - \(\theta_F \) – day ahead Forecast

Time (Days)
Constrained MPC (with Stpt Anticipation)

Simulation under conditions of active constraints in net stock and factory starts.
Some Observations

- Feedback-only control strategies (even if multi-degree-of-freedom) are unsatisfactory (in general).

- Combined feedback-feedforward strategies that rely on the availability of a demand forecast signal are necessary for good, comprehensive control.

- Model predictive control can provide useful functionality (e.g., constraint handling, anticipation) but the traditional move suppression/single-degree-of-freedom formulation can be lacking.
Motivation for an Improved MPC Formulation

- Integrating dynamics (i.e., ramp responses and disturbances)

- Need to take advantage of anticipated future system inputs (i.e., forecasted demand)

- Multiple degrees-of-freedom (forecasted + unforecasted demand + inventory setpoint tracking) with ease of tuning

- Ability to incorporate problem-specific constraints and possibly hybrid dynamics

- Robustness in the presence of stochasticity and nonlinearity

Block Diagram for 3 DoF MPC Controller

- **MPC Controller**
 - **Forecasted Demand**
 - **Optimization**
 - **Filter II**
 - **Prediction and Estimation**
 - **Inventory Targets**
 - **Filter I**
 - **Actual Demand**
 - **Plant**
 - **Measurement Noise**
 - **Target**
 - **Error Projection**
 - **y**
 - **u**
Three Degree-of-Freedom (3-DoF) MPC Tuning

1. Filter I for inventory target setpoint tracking (Type I /asymptotically step signals)

\[f_i(z) = \frac{(1 - \alpha_{Ii})z}{z - \alpha_{Ii}}, \quad i = 1, \ldots, n \]

2. Filter II for forecasted demand satisfaction (Type II /asymptotically ramp signals)

\[f_j(z) = \frac{\left(1 - \alpha_{IIj} \right) + \frac{3}{5} \alpha_{IIj}}{1 - \alpha_{IIj} z^{-1}} - \frac{1}{5} \alpha_{IIj} z^{-1} - \frac{2}{5} \alpha_{IIj} z^{-2}, \quad j = 1, \ldots, n \]

Step-A1: $X(k|k - 1)$: one step ahead prediction using actual measured disturbance (d)

Step-A2: $X(k|k) = X(k|k - 1) + K_f(y(k) - CX(k|k - 1))$

Step-B1: $X_{flt}(k|k - 1)$: one step ahead prediction using filtered measured disturbance (d_{flt})

Step-B2: $X_{flt}(k|k) = X_{flt}(k|k - 1) + K_f(y(k) - CX(k|k - 1))$

\[
K_f = [0 \ F_b \ F_a]^T
\]

\[
F_a = \text{diag}\{(f_a)_1, \cdots, (f_a)_{n_y}\}
\]

\[
F_b = \text{diag}\{(f_b)_1, \cdots, (f_b)_{n_y}\}
\]

\[
(f_b)_j = \frac{(f_a)_j^2}{1 + \alpha_j - \alpha_j (f_a)_j}, \quad 0 \leq (f_a)_j \leq 1, \quad 1 \leq j \leq n_y
\]

- $(f_a)_j$ is focused on each output j; constrained to $0 \leq (f_a)_j \leq 1$
- Speed of dist. rejection is proportional to the tuning parameter $(f_a)_j$
3-DoF MPC for Continuous Input

\[f_a = 0.3; \alpha_r = 0.9; \alpha_d = 0.9 \]

\[f_a = 1; \alpha_r = 0; \alpha_d = 0 \]

Independent controller adjustment without the need for move suppression!
Controller Model (includes hybrid dynamics)

Plant Model Mixed Logical Dynamical (MLD) Framework

\[
\begin{align*}
x(k+1) &= A x(k) + B_1 u(k) + B_2 \delta(k) + B_3 z(k) + B_d d(k) \\
y(k+1) &= C x(k+1) + d'(k+1) + \nu(k+1) \\
E_5 &\geq E_2 \delta(k) + E_3 z(k) - E_4 y(k) - E_1 u(k) + E_d d(k)
\end{align*}
\]

\[d': \text{ Unmeasured disturbance} \quad d : \text{ Measured disturbance}\]

Disturbance Model

\[
\begin{align*}
x_w(k+1) &= A_w x_w(k) + B_w w(k) \quad \text{Integrated white noise} \\
d'(k+1) &= C_w x_w(k+1) \\
A_w &= \text{diag}\{\alpha_1, \alpha_1, \cdots, \alpha_{n_y}\}, \quad B_w = C_w = I
\end{align*}
\]
MPC Objective Function

\[
\min_{\{u(k+i)_{i=0}^{m-1}, \delta(k+i)_{i=0}^{p-1}, z(k+i)_{i=0}^{p-1}\}} J \triangleq \sum_{i=1}^{p} \| (y(k+i) - y_r) \|_Q^2 + \sum_{i=0}^{m-1} \| (\Delta u(k+i)) \|_{Q_{\Delta u}}^2 \\
+ \sum_{i=0}^{m-1} \| (u(k+i) - u_r) \|_{Q_u}^2 + \sum_{i=0}^{p-1} \| (\delta(k+i) - \delta_r) \|_{Q_d}^2 + \sum_{i=0}^{p-1} \| (z(k+i) - z_r) \|_{Q_z}^2
\]

Subject to

\[
E_5 \geq E_2 \delta(k+i) + E_3 z(k+i) - E_4 y(k+i) - E_1 u(k) + E_d d(k+i), \quad 0 \leq i \leq p - 1 \\
y_{\min} \leq y(k+i) \leq y_{\max}, \quad 1 \leq i \leq p \\
u_{\min} \leq u(k+i) \leq u_{\max}, \quad 0 \leq i \leq m - 1 \\
\Delta u_{\min} \leq \Delta u(k+i) \leq \Delta u_{\max}, \quad 0 \leq i \leq m - 1
\]
Hybrid 3 DoF Model Predictive Control, Production-Inventory System

\[u(k) \in \{0, 33.33, 66.66, 100\} \]

\[y(k + 1) = y(k) + Ku(k - (\theta - 1)) - d(k) \]

\[d(k) = \begin{cases} df(k) & \text{forecasted} \\ du(k) & \text{unforecasted} \end{cases} \]
Hybrid vs Continuous 3 DoF MPC
Production-Inventory System

Continuous $u(t)$

- $y(k)$
- $u(k)$
- $d(k)$

Discrete-level $u(t)$

- $u(k) \in \{0, 33.33, 66.66, 100\}$

Solution involves solving a *Mixed Integer Quadratic Program* (MIQP) to address continuous error but discrete-level inputs (i.e., a hybrid problem).
Production-Inventory System in the Presence of Forecast Error

\[d(t) = d_F(t - \theta_F) + d_U(t) \]

Integrating System with Delays
The closed-loop system response to a unit pulse in forecast error provides a basis for understanding modeling requirements for control-relevant demand models.

The effect of forecast error on closed-loop performance is most significant in an intermediate frequency range.
Response to Forecast Error (MPC, changing move suppression)

Inventory response to forecast error

Starts response to forecast error

\(Q_{u} = 1.0 \)
True demand is defined by a demand transfer function $p_d(z)$ and a stochastic component $H(z)a(t)$.

$$d(t) = p_d(z)u_d(t) + H(z)a(t)$$

The estimated demand is defined by $\tilde{p}_d(z)$ and a noise model $\tilde{p}_e(z)$.

$$d(t) = \tilde{p}_d(z)u_d(t) + \tilde{p}_e e(t)$$

The control-relevant estimation step consists of minimizing the one-step-ahead prediction error, where $L(z)$ is the prefilter.

$$\min_{\tilde{p}_d,\tilde{p}_e} V = \min_{\tilde{p}_d,\tilde{p}_e} \frac{1}{N} \sum_{t=1}^{N} [L(z)e(t)]^2 = \min_{\tilde{p}_d,\tilde{p}_e} \frac{1}{N} \sum_{t=1}^{N} e_L^2(t)$$

Parseval’s theorem allows for frequency domain analysis of the problem.

$$\lim_{N \to \infty} \frac{1}{N} \sum_{t=1}^{N} e_L^2(t) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \left(\frac{L(e^{j\omega})}{\tilde{p}_e(e^{j\omega})} \right)^2 \left(|p_d(e^{j\omega}) - \tilde{p}_d(e^{j\omega})|^2 \Phi_{u_d}(\omega) + |H(e^{j\omega})|^2 \Phi_a(\omega) \right) d\omega$$
Multi-Objective Formulation

It is desirable to minimize a weighted combination of inventory and factory starts variance.

\[
\min_{\tilde{p}_d, \tilde{p}_e} \left[\sum_{t=0}^{\infty} (1 - \gamma) e_c^2(t) + \lambda \sum_{t=0}^{\infty} \gamma \Delta u^2(t) \right]
\]

The control-relevant prefilter then takes the following form.

\[
\frac{|L(e^{j\omega})|^2}{|\tilde{p}_e(e^{j\omega})|^2} \Phi_{e_F}(\omega) = (1 - \gamma)|L_{e_c}(e^{j\omega})|^2 \Phi_{e_F}(\omega) + \gamma \lambda |L_{\Delta u}(e^{j\omega})|^2 \Phi_{e_F}(\omega)
\]

By assuming an output error model structure, \(L(z) \) can be reduced to the following form.

\[
|L(e^{j\omega})|^2 = (1 - \gamma)|L_{e_c}(e^{j\omega})|^2 + \gamma \lambda |L_{\Delta u}(e^{j\omega})|^2
\]

A curve fitting procedure is then used to obtain an Infinite Impulse Response filter that matches the amplitude ratio of the control-relevant prefilter.
Multi-Objective Formulation (Cont.)

\[|L(e^{j\omega})|^2 = (1 - \gamma)|L_e(e^{j\omega})|^2 + \gamma \lambda |L_\Delta u(e^{j\omega})|^2 \]

\(\gamma = 0 \) : Inventory Variance Optimal
\(\gamma = 1 \) : Starts Change Variance Optimal
\(\gamma \) : Weighted Combination
Final Observations

- Production-inventory systems are iconic dynamical systems that describe interesting problems in the process industries (and beyond).

- Combined feedback-feedforward strategies relying on demand forecast signals are necessary to adequately control these systems. Improved formulations of MPC can be developed in this regard.

- Demand modeling is a problem of significant importance in production-inventory systems; analysis of closed-loop decision policies show that these are most responsive to forecast error in an intermediate frequency bandwidth.

- Prefiltering can be used to apply the proper emphasis in control-relevant demand modeling.

- Multivariable extensions exist for both the control and demand modeling / demand forecasting segments of this presentation.
Primary References

Additional references in http://csel.asu.edu/SCMpapers
Acknowledgements

- Intel Research Council
- National Science Foundation (DMI-0432439)
- National Institutes of Health (K25 DA021173 and R21 DA024266).
- Jay D. Schwartz, Naresh N. Nandola, Martin W. Braun, Wenlin Wang, Manuel Arahal, and Kirk D. Smith