Intrinsic Robustness of the Price of Anarchy

Tim Roughgarden Stanford University

Some Context

Obvious fact: many modern applications in CS involve autonomous, self-interested agents

- motivates noncooperative games as modeling tool

Unsurprising fact: equilibria of noncooperative games typically inefficient

- i.e., don't optimize natural objective functions
- e.g., Nash equilibrium: an outcome such that no player better off by switching strategies

Price of anarchy: quantify inefficiency w.r.t some objective function.

Price of Anarchy

Definition: price of anarchy (POA) of a game (w.r.t. some objective function):

equilibrium objective fn value

optimal obj fn value

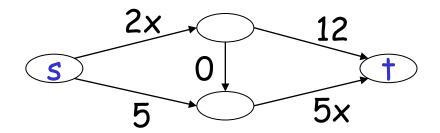
the closer to 1 the better

Well-studied goal: when is the POA small?

- benefit of centralized control is small
- can suggest engineering rules of thumb: [Roughgarden STOC 02]: 10% extra network capacity guarantees POA for network routing < 2

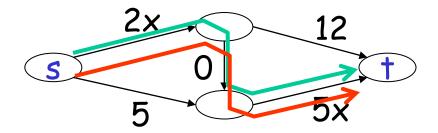
The Price of Anarchy

Network w/2 players:



The Price of Anarchy

Nash Equilibrium:

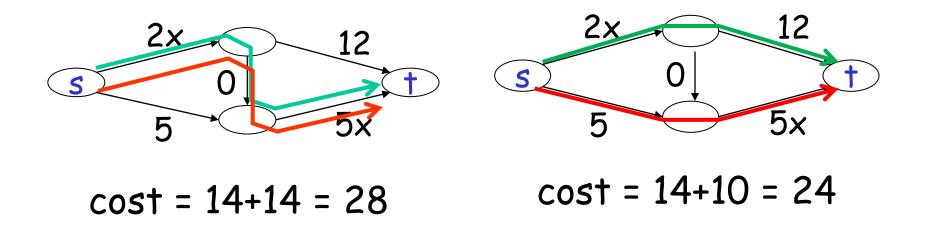


cost = 14+14 = 28

The Price of Anarchy

Nash Equilibrium:

To Minimize Cost:



Price of anarchy = 28/24 = 7/6.

• if multiple equilibria exist, look at the *worst* one

Key Points

- main definition: a "canonical way" to bound the price of anarchy (for pure equilibria)
- theorem 1: every POA bound proved
 "canonically" is automatically far stronger
 - e.g., even applies "out-of-equilibrium", assuming no-regret play
- theorem 2: canonical method provably yields optimal bounds in fundamental cases

Abstract Setup

- n players, each picks a strategy s_i
- player i incurs a cost $C_i(s)$

Important Assumption: objective function is $cost(s) := \sum_i C_i(s)$

Key Definition: A game is (Λ,μ) -smooth if, for every pair s,s* outcomes ($\Lambda > 0$; $\mu < 1$):

 $\Sigma_i C_i(s_i^*, s_i) \leq \Lambda \cdot cost(s^*) + \mu \cdot cost(s) \quad [(*)]$

- Next: "canonical" way to upper bound POA (via a smoothness argument).
- notation: s = a Nash eq; s* = optimal
- Assuming (Λ,μ) -smooth:
- $\begin{aligned} \cos(s) &= \sum_{i} C_{i}(s) & [defn of cost] \\ &\leq \sum_{i} C_{i}(s^{*}_{i}, s_{-i}) & [s a Nash eq] \\ &\leq \Lambda \cdot \cos(s^{*}) + \mu \cdot \cos(s) & [(*)] \end{aligned}$

Then: POA (of pure Nash eq) $\leq \lambda/(1-\mu)$.

Why Is Smoothness Stronger?

Key point: to derive POA bound, only needed

 $\Sigma_i C_i(s_i^*, s_i) \leq \Lambda \cdot cost(s^*) + \mu \cdot cost(s)$ [(*)]

to hold in special case where s = a Nash eq and s* = optimal.

Smoothness: requires (*) for *every* pair s,s* outcomes.

- even if **s** is *not* a pure Nash equilibrium

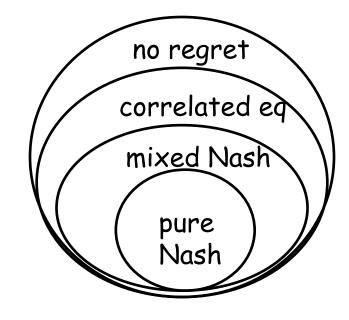
Example Application

- Definition: a sequence s¹,s²,...,s^T of outcomes is *no-regret* if:
- for each player i, each fixed action q_i:
 - average cost player i incurs over sequence no worse than playing action q_i every time
 - simple hedging strategies can be used by players to enforce this (for suff large T)

Theorem: in a (Λ,μ) -smooth game, average cost of every no-regret sequence at most $[\Lambda/(1-\mu)] \times \text{cost}$ of optimal outcome.

Why Important?

- bound on no-regret sequences implies bound on inefficiency of mixed and correlated equilibria
- bound applies even to sequences that don't converge in any sense



- no regret much weaker than reaching equilibrium
- [Blum/Even-Dar/Ligett PODC 06], [Blum/Hajiaghayi/Ligett/Roth STOC 08]

notation: s¹,s²,...,s^T = no regret; s^{*} = optimal

Assuming (Λ,μ) -smooth: $\Sigma_{t} \cos t(s^{t}) = \Sigma_{t} \Sigma_{i} C_{i}(s^{t})$ [defn of cost]

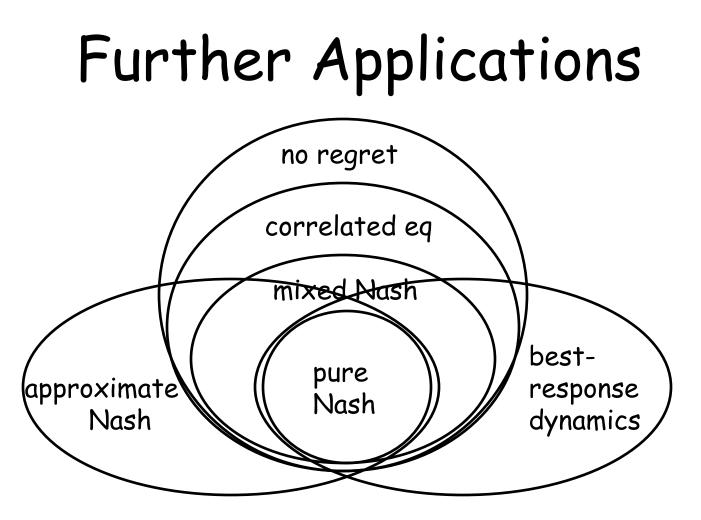
notation: s¹,s²,...,s^T = no regret; s^{*} = optimal

Assuming (Λ,μ) -smooth: $\Sigma_{t} \operatorname{cost}(s^{t}) = \Sigma_{t} \Sigma_{i} C_{i}(s^{t}) \qquad [defn of cost]$ $= \Sigma_{t} \Sigma_{i} [C_{i}(s^{t}_{i},s^{t}_{-i}) + \Delta_{i,t}] \quad [\Delta_{i,t} := C_{i}(s^{t}) - C_{i}(s^{t}_{i},s^{t}_{-i})]$

notation: s¹,s²,...,s^T = no regret; s^{*} = optimal

Assuming (Λ,μ) -smooth: $\Sigma_{t} \operatorname{cost}(s^{t}) = \Sigma_{t} \Sigma_{i} C_{i}(s^{t}) \qquad [defn of cost]$ $= \Sigma_{t} \Sigma_{i} [C_{i}(s^{*}_{i},s^{t}_{-i}) + \Delta_{i,t}] \quad [\Delta_{i,t} := C_{i}(s^{t}) - C_{i}(s^{*}_{i},s^{t}_{-i})]$ $\leq \Sigma_{t} [\Lambda \cdot \operatorname{cost}(s^{*}) + \mu \cdot \operatorname{cost}(s^{t})] + \Sigma_{i} \Sigma_{t} \Delta_{i,t} \quad [(*)]$

- notation: $s^1, s^2, ..., s^T$ = no regret; s^* = optimal Assuming (Λ, μ)-smooth:
- $$\begin{split} \Sigma_{t} \cos t(\mathbf{s}^{\dagger}) &= \Sigma_{t} \Sigma_{i} C_{i}(\mathbf{s}^{\dagger}) & [\text{defn of cost}] \\ &= \Sigma_{t} \Sigma_{i} \left[C_{i}(\mathbf{s}^{\star}_{i,i} \mathbf{s}^{\dagger}_{-i}) + \Delta_{i,t} \right] & [\Delta_{i,t} := C_{i}(\mathbf{s}^{\dagger}) C_{i}(\mathbf{s}^{\star}_{i,i} \mathbf{s}^{\dagger}_{-i})] \\ &\leq \Sigma_{t} \left[\Lambda \cdot \cos t(\mathbf{s}^{\star}) + \mu \cdot \cos t(\mathbf{s}^{\dagger}) \right] + \Sigma_{i} \Sigma_{t} \Delta_{i,t} & [(^{\star})] \\ \text{No regret: } \Sigma_{t} \Delta_{i,t} \leq 0 \text{ for each } i. \\ \text{To finish proof: divide through by T.} \end{split}$$



Theorem: in a (Λ,μ) -smooth game, everything in these sets costs (essentially) $\Lambda/(1-\mu) \times OPT$.

Some Smoothness Bounds

Examples: selfish routing, linear cost fns.

- every nonatomic game is (1,1/4)-smooth
 - implicit in [Roughgarden/Tardos 00]
 - less implicit in [Correa/Schulz/Stier Moses 05]
 - implies bound of 4/3 (tight even for pure eq)
- every atomic game is (5/3,1/3)-smooth
 - follows directly from analysis in [Awerbuch/Azar/Epstein 05], [Christodoulou/Koutsoupias 05]
 - implies bound of 5/2 (tight even for pure eq)

Tight Game Classes

Theorem: for every set C, congestion games with cost functions restricted to C are *tight*:

maximum [pure POA] = minimum $[\Lambda/(1-\mu)]$

congestion games w/cost functions in C (Λ , μ): all such games are (Λ , μ)-smooth

Corollaries

Corollary 1: first characterization of "universal worstcase congestion games" in the atomic case.

- analog of "Pigou-like (2-node, 2-link) networks are the worst" in nonatomic case [Roughgarden 03]
- here: "2 parallel cycles always suffice"
 - and are generally necessary for minimal worst-case examples

Corollary 2: first (tight) POA bounds for (atomic) congestion games with general cost functions.

 previous exact bounds for polynomials +w/nonnegative coefficients: [Aland et al 06], [Olver 06]

Wrap-Up

- Summary: the most common way of proving POA bounds automatically yields a much more robust guarantee
- and this technique often gives tight bounds

Ongoing work: weighted congestion games [with Bhawalkar & Gairing]

- splittable congestion games [with Schoppman]
- "inexpressive" auctions [with Bhawalkar]
- limitations of smoothness [with Nadav]