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Some Context

Obvious fact: many modern applications in CS 
involve autonomous, self-interested agents
– motivates noncooperative games as modeling tool

Unsurprising fact: equilibria of noncooperative 
games typically inefficient
– i.e., don't optimize natural objective functions

– e.g., Nash equilibrium: an outcome such that no 
player better off by switching strategies

Price of anarchy: quantify inefficiency w.r.t 
some objective function.
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Price of Anarchy

Definition: price of anarchy (POA) of a game 
(w.r.t. some objective function):

Well-studied goal: when is the POA small?
– benefit of centralized control is small

– can suggest engineering rules of thumb: 
[Roughgarden STOC 02]: 10% extra network 
capacity guarantees POA for network routing ≤ 2

optimal obj fn value

equilibrium objective fn value the closer to 1 
the better
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The Price of Anarchy

Network w/2 players:
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The Price of Anarchy

Nash Equilibrium:

cost = 14+14 = 28
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The Price of Anarchy

Nash Equilibrium:          To Minimize Cost:

Price of anarchy = 28/24 = 7/6.

• if multiple equilibria exist, look at the worst one
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Key Points

• main definition: a “canonical way” to bound 
the price of anarchy (for pure equilibria)

• theorem 1: every POA bound proved 
“canonically” is automatically far stronger
– e.g., even applies “out-of-equilibrium”,   

assuming no-regret play

• theorem 2: canonical method provably 
yields optimal bounds in fundamental cases
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Abstract Setup

• n players, each picks a strategy si

• player i incurs a cost Ci(s)

Important Assumption: objective function is 
cost(s) := i Ci(s)

Key Definition: A game is (λ,μ)-smooth  if, for 
every pair s,s* outcomes (λ > 0; μ < 1):

i Ci(s*
i,s-i) ≤  λ●cost(s*) + μ●cost(s)    [(*)]
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Smooth => POA Bound

Next: “canonical” way to upper bound POA 
(via a smoothness argument).

• notation: s = a Nash eq; s* = optimal

Assuming (λ,μ)-smooth: 

cost(s)  =  i Ci(s) [defn of cost]

≤  i Ci(s*
i,s-i)                 [s a Nash eq] 

≤  λ●cost(s*) + μ●cost(s)      [(*)]

Then: POA (of pure Nash eq) ≤ λ/(1-μ).
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Why Is Smoothness Stronger?

Key point: to derive POA bound, only needed

i Ci(s*
i,s-i) ≤  λ●cost(s*) + μ●cost(s)    [(*)]

to hold in special case where s = a Nash eq 
and s* = optimal.

Smoothness: requires (*) for every pair s,s* 

outcomes.
– even if s is not a pure Nash equilibrium



Example Application

Definition: a sequence s1,s2,...,sT of outcomes 
is no-regret if: 

• for each player i, each fixed action qi:
– average cost player i incurs over sequence no 

worse than playing action qi every time

– simple hedging strategies can be used by 
players to enforce this (for suff large T)

Theorem: in a (λ,μ)-smooth game, average 
cost of every no-regret sequence at most      
[λ/(1-μ)] x cost of optimal outcome.
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Why Important?

pure
Nash

mixed Nash

correlated eq

no regret
• bound on no-regret                         

sequences implies bound 
on inefficiency of mixed                            
and correlated equilibria

• bound applies even to                             
sequences that don’t                                      
converge in any sense
• no regret much weaker than reaching equilibrium

• [Blum/Even-Dar/Ligett PODC 06], 
[Blum/Hajiaghayi/Ligett/Roth STOC 08]
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Smooth => POTA Bound

• notation: s1,s2,...,sT = no regret; s* = optimal

Assuming (λ,μ)-smooth: 

t cost(st)  = t i Ci(st)               [defn of cost]
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Smooth => POTA Bound

• notation: s1,s2,...,sT = no regret; s* = optimal

Assuming (λ,μ)-smooth: 

t cost(st)  = t i Ci(st)               [defn of cost]

= t i  [Ci(s*
i,st

-i) + ∆i,t]    [∆i,t:= Ci(st)- Ci(s*
i,st

-i)]
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Smooth => POTA Bound

• notation: s1,s2,...,sT = no regret; s* = optimal

Assuming (λ,μ)-smooth: 

t cost(st)  = t i Ci(st)               [defn of cost]

= t i  [Ci(s*
i,st

-i) + ∆i,t]    [∆i,t:= Ci(st)- Ci(s*
i,st

-i)]

≤ t [λ●cost(s*) + μ●cost(st)] + i t ∆i,t [(*)]
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Smooth => POTA Bound

• notation: s1,s2,...,sT = no regret; s* = optimal

Assuming (λ,μ)-smooth: 

t cost(st)  = t i Ci(st)               [defn of cost]

= t i  [Ci(s*
i,st

-i) + ∆i,t]    [∆i,t:= Ci(st)- Ci(s*
i,st

-i)]

≤ t [λ●cost(s*) + μ●cost(st)] + i t ∆i,t [(*)]

No regret: t ∆i,t ≤ 0 for each i.

To finish proof: divide through by T.
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Further Applications

pure
Nash

mixed Nash

correlated eq

no regret

best-
response
dynamics

approximate
Nash

Theorem: in a (λ,μ)-smooth game, everything in 
these sets costs (essentially) λ/(1-μ) x OPT.
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Some Smoothness Bounds

Examples: selfish routing, linear cost fns.

• every nonatomic game is (1,1/4)-smooth
– implicit in [Roughgarden/Tardos 00]

– less implicit in [Correa/Schulz/Stier Moses 05]

– implies bound of 4/3  (tight even for pure eq)

• every atomic game is (5/3,1/3)-smooth
– follows directly from analysis in 

[Awerbuch/Azar/Epstein 05], 
[Christodoulou/Koutsoupias 05]

– implies bound of 5/2  (tight even for pure eq)



Tight Game Classes

Theorem: for every set C, congestion games 
with cost functions restricted to C are tight:

maximum  [pure POA] =   minimum [λ/(1-μ)]
congestion games
w/cost functions in C

(λ ,μ): all such games
are (λ ,μ)-smooth
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Corollaries

Corollary 1: first characterization of “universal worst-
case congestion games” in the atomic case.

• analog of “Pigou-like (2-node, 2-link) networks are the 
worst” in nonatomic case [Roughgarden 03]

• here: “2 parallel cycles always suffice”
– and are generally necessary for minimal worst-case examples

Corollary 2: first (tight) POA bounds for (atomic) 
congestion games with general cost functions.

• previous exact bounds for polynomials +w/nonnegative 
coefficients: [Aland et al 06], [Olver 06]



Wrap-Up

Summary: the most common way of proving 
POA bounds automatically yields a much 
more robust guarantee

• and this technique often gives tight bounds

Ongoing work: weighted congestion games       
[with Bhawalkar & Gairing]

• splittable congestion games [with Schoppman]

• "inexpressive" auctions [with Bhawalkar]

• limitations of smoothness [with Nadav]
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