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Grid computing

This is an example of a virtual facility, composed of shared
resources, — such as computers, routers, and communication links
—, which are used together to so that agents can perform tasks.
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Issues for shared infrastructures

Computer Science/Engineering

Fast Internet, combined with ever increasing performance and
reducing cost, has made Grid computing a reality.

Amazon, IBM, and Sun are already providers of simple Grid
services. However, the ultimate goal is infrastructures in which
participants can be both providers and consumers.

Business/Economics

Adoption has been slowed because of perceived economic barriers.

GridEcon: a ‘Sixth Framework Programme’ of European
Community, exploring the perceived economic barriers to the
adoption of grid, or cloud, computing, 07/06–05/09.
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Economic/business questions

• Participant asks, ‘How will I benefit by participating in a
shared infrastructure?’

• ‘How are the costs and benefits going to be shared?’

• ‘How is a shared infrastructure best organized?’

Participants will be making distributed decisions (about their
participation, contributions and usage).

Can these decisions be coordinated and optimized through price

mechanisms — or is something additional needed?
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A ‘market solution’

The GridEcon project developed software that ‘intelligently
matches requests for resource against resources which are
available.’

Providers and consumers of computing resources go to trade.

An organization might post that it needs 10 virtual machines of a
certain type for 8 hours and state that the maximum price it is
willing to pay is 100 euros.

This corresponds to a ‘bid’ in this market.

Similarly, an organization can post computing resources with an
‘ask’ of the minimum price at which it is willing to sell.

The market matches the asks and bids.
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A ‘rule-based solution’

At each point in time, participants can either contribute resources
or ask for resources.

Resources are allocated amongst those who ‘ask’ according to
some rule.

Some rules are obviously bad: like ‘equal shares’, which leads to
the familiar free-rider problem.

An alternative rule might be ‘proportional shares’.

Can we find good rules?
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Let us model operation of an infrastructure.

• It is composed of resources (links, servers, buffers, etc).

• It an be operated in different ways, say ω ∈ Ω,
(by scheduling, routing, bandwidth allocation, etc.)

• On a given day the subset of agents who wish to use the
infrastructure is some S ⊆ {1, . . . , n}.

• If operated in manner ω then agent i has benefit

θiui(ω)

• ui(·) is pubic knowledge, but only agent i knows θi.

• ω is to be chosen on the basis of S and declared θi.
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Agents pay for operating cost

Fees are collected to cover some daily operating cost, c.

In some situations we may take the fee as money.

In others, we may wish to collect fees ‘in kind’, i.e., as
contributions to the pool of resources which comprises the
infrastructure.

Suppose the fees are money, and agent i is charged pi(S, θ).

The (ex-ante) budget constraint is

ES,θ [ p1(S, θ) + · · ·+ pn(S, θ)] ≥ c
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The incentive compatibility issue

Agent i wishes to maximize his (ex-ante) expected net benefit

nbi(θi) = ES,θ−i
[θiui(ω(S, θ))− pi(S, θ)]

Unless pi(S, θ) and ω(S, θ) are chosen carefully, agent i may
benefit by being untruthful in declaring θi.
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A simple mathematical example

Consider 2 agents, both present on all days.

Infrastructure is described by a single resource, parameterized by a
number (such as computing cycles); so operating methods are:

{ω} = {(x1, x2) : x1 + x2 ≤ 1}

On day t, agent i has utility for resource of θi,tu(x), where
u(x) = x, and θi,t is ex-ante known to be distributed U [0, 1].

Focus on one day; let θi,t = θi. Aim to maximize

Eθ1,θ2

[

max
x1,x2

{θ1u(x1) + θ2u(x2)} − c

]

= E [max{θ1, θ2} − c]

= 2
3 − c

But as θ1, θ2 are unknown, this ‘first best’ cannot be achieved.



Comparison to auction design

Auction

Aim is to maximize seller’s expected revenue:

ES,θ [ p1(S, θ) + · · · + pn(S, θ)]

Infrastructure optimization

Aim is to maximize expected welfare:

ES,θ [θ1u1(ω(S, θ)) + · · ·+ θnun(ω(S, θ))]− c

subject to
ES,θ [ p1(S, θ) + · · ·+ pn(S, θ)] ≥ c

Both problems also have ‘individual rationality’ and ‘incentive
compatibility constraints’.



Second-best solution

In practice we do not know θ1 and θ2.

A ‘second-best’ mechanism can be constructed as follows.

If agent i declares θi then he is charged a fee

p(θi) =

{

(1/2)(θ2i + θ20) , θi ≥ θ0

0 , θi < θ0

He obtains xi = 1 if θi = max{θ1, θ2} and θi ≥ θ0.

Note that the resource is given wholly to one agent, and may be
given to neither.
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Properties of the ‘solution’

• Agents are incentivized to be truthful.

• Expected social welfare is decreasing in θ0.

• Sum of the expected payments is

E
[

p(θ1) + p(θ2)
]

= 1/3 + θ20 − (2/3)θ20 ,

increasing in θ0.

• Choosing θ0 so that the above equals c, maximizes the social
welfare subject to covering cost c.
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Expected social welfare as a function of c, compared to first-best.

For c ∈ [0.333, 0.416] the second-best falls short of the first-best.

There is no way to cover a cost greater than 5
12 = 0.416.
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Other second-best mechanisms

Other mechanisms can be designed that also work.

(a) There is a mechanism that has ex-post cost-covering, i.e., so
that p1(θ1, θ2) + p2(θ1, θ2) = c.

p1(θ1, θ2) =
1
2c+

1
2(θ

2
1 + θ20)1{θ1>θ0} − 1

2(θ
2
2 + θ20)1{θ2>θ0}

(b) There is a mechanism that has ex-post incentive compatibility
and rationality.

p1(θ1, θ2) = max(θ0, θ2)1{θ1>max(θ0,θ2)}
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√
x. The resource is shared differently.

The optimal policy is found by solving a Lagrangian dual problem

min
λ≥0







Eθ1,θ2



 max
x1, x2≥0

x1+x2≤1

2
∑

i=1

hλ(θi)u(xi)



− (1 + λ)c







.

where h(θi) = (θi + λ(2θi − 1)) and

xi(θ1, θ2) =
hλ(θi)

2

∑2
j=1 hλ(θj)

2

Fees increase with λ.

Social welfare decreases with λ, but is maximal subject to the
constraint of covering the cost.
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The role of the operating policy

Interestingly, the resource is not allocated in the ‘most efficient’
way.

That would be xi(θ1, θ2) = θ2i /(θ
2
1 + θ22).

This is one of our most important lessons:

To optimally incentivize participation in shared infrastructures, and
make the most of the resources available, one should appreciate
that both (i) fee structure, and (ii) operating methods, must both
play a part in providing the correct incentives to users.
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Further research

• ‘Can distributed decisions be coordinated and optimized
through price mechanisms — or is something additional
needed?’

• Contribution schemes: agent i who contributes qi gets
resource (when he requests it) in proportion to qsi .

• As the number of participants becomes large the management
simplifies. Allocation of the resource can be that which
maximizes

∑

i∈S
θiu(xi)

• Other models?
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Building a facility from scratch

A different model: facility of size Q, costing c(Q) = Q (per slot),
is formed by initial contributions of agents.
These are incentivized to contribute because their contribution will
affect the amount of resources they will get at run time.
Probably a good model for virtual Grid infrastructures.

• θi,t = θi for all t (private information).

• Agent i is ‘on-off’ w.p. αi, 1− αi. (public information).

• Sharing policy is xi(θ, S), S= set of agents ‘on’.

• System planner posts how he will compute agents’
contributions and the xi(θ, S) as functions of the θis that
they declare.

• Agents declare θis and system runs according to posted policy.
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Consider simple case of 2 identical agents θ1 = θ2 = 1, c(Q) = Q.

Agent i contributes qi. Agent 1 has net benefit

α1(1− α2)u(x
{1}
1 ) + α1α2u(x

{1,2}
1 )− q1 .

Consider 4 possible sharing disciplines:

• Acting alone: x
{i}
i = x

{1,2}
i = qi.

• Equal sharing: x
{i}
i = q1 + q2 and x

{1,2}
i = 1

2(q1 + q2).

• Proportional sharing:

x
{i}
i = q1 + q2 , x

{1,2}
i =

qi
q1 + q2

(q1 + q2) .

• s-Proportional sharing:

x
{i}
i = q1 + q2 , x

{1,2}
i =

qsi
qs1 + qs2

(q1 + q2) .



Results for αi = α = 0.8, u(x) = 10− 1/x

scheme social welfare values of q1, q2

Acting alone rα− 2
√
α

√
α

6.21115 0.894427

Equal sharing rα− 3
2

√

α(1 + α) 1
2

√

α(1 + α)
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√
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2
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1
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Acting alone rα− 2
√
α

√
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6.21115 0.894427

Equal sharing rα− 3
2

√

α(1 + α) 1
2

√

α(1 + α)

s = 0 6.2 0.6

Proportional sharing rα−
√
α (3+5α)

2
√
1+3α

1
2

√

α(1 + 3α)

s = 1 6.30225 0.824621

Central planner rα−
√

2α(1 + α)
√

α(1 + α)/2

s = 1
2(1 + 1/α) 6.30294 0.848528

How do these results generalize?
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Define gi(θi) = θi − (1− Fi(θi))/fi(θi)

E.g., g(θi) = 2θi − 1 when Fi is U [0, 1].

There is a λ ≥ 0, such that for all S the optimal way to share
resource amongst a set of active agents S is to maximize

∑

i∈S(θi + λg(θi))u(xi(θ, S)) , (1)

over
∑

i xi(θ, S) ≤ Q(θ).

Here λ is a Lagrange multiplier for a constraint

E
[

∑

i pi(θ)
]

≥ E
[

c(Q(θ))
]

.

Note g(θi) is increasing in θi, but E[g(θi)] = 0.
So an agent who declares a greater θi is receives more than a
market allocation would give him when sharing the resource.
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A large N solution

• Assume c(Q) = Q and N very large.

• Then S will always be near its typical value and xi(θ, S)
become xi(θ) ≈ ES [xi(θ, S)].

• The allocations should satisfy
∑

i αixi(θ) ≤ Q.

It turns out that the solution of the Mechanism Design problem
implies a simple ‘effective bandwidth’ tariff for type i agents:

• System guarantees (with prob (1-ε)) resource y for a
contribution of αiy (αi(1 + ε)y).

• Agent i indirectly declares his θi by selecting y to maximize
maxy{θiu(y)− αiy}.

• No information on Fi required!
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Now the αi are private information, i.i.d. uniform on [0, 1], and
θi,t = θi = 1. Sensible if accounting of activity is costly.

The facility is built from agent contributions.
We wish to compute the set of optimal tariffs q(ω), x(ω)
parametrized by ω the ‘type’ of the agent, where an agent that
contributes q(ω) gets x(ω) when he is ‘on’.

An agent maximizes his net benefit f(α), where

f(α) = max

{

max
ω

[

αu(x(ω)) − q(ω)
]

, 0

}

.

So need d[αu(x(ω)) − q(ω)]/dω|ω=α = αu′(α) − g′(α) = 0.
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So if an agent with α∗ has net benefit 0 then

q(α) = αu(x(α)) −
∫ α

α∗

u(x(ω)) dω .

giving
∫ 1

α∗

q(α) dα =

∫ 1

α∗

(2α− 1)u(x(α)) dα .

The resource constraint is

∫ 1

0
[αx(α) − q(α)] dα ≤ 0

So we seek to maximize a Lagrangian

L =

∫ 1

α∗

[

(α+ λ(2α− 1))u(x(α)) − (1 + λ)αx(α)
]

dα ,



For u(x) =
√
x, this gives

x(ω) =

(

2λ+ 1

2(λ+ 1)
− λ

2(λ+ 1)ω

)2

We find the correct λ by minimizing with respect to λ, giving
λ = 0.232206. So for ω ≥ 0.158566,

q(ω) = 0.173521 + 0.0942239 log ω

x(ω) =

(

0.594224 − 0.0942239

ω

)2

and q(ω) = x(ω) = 0 for ω < 0.158566 (= λ/(1 + 2λ)).

Note that agents with small α (less than α∗ = 0.158566) are
prevented from participating.



The optimal solution for u(x) =
√
x
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The black lines show q(α) and x(α), with q(α) < x(α) when α > 0.2339.
The red line is the net benefit f(α) = tx(α) − q(α).
The the blue line is α2/4, the net benefit obtained acting alone.

Note that some agents would prefer self-provisioning.
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Conclusions

• In most realistic resource allocation problems there is private
information to participants.

• Resource allocation policies need to take account of need to
give right incentives. To encourage agents who value the
resource more to say so, and so be willing to contribute more
towards the cost, we need to reward them better than an
internal market would do. But figuring out exactly how to do
this is not a simple task!

• Simple-minded sharing policies (like proportional sharing) may
not to produce sufficient incentives for participants to
contribute resources.

• Many new interesting problems!!!



Motivation: Grid Computing

Grid Computing
A virtual computer composed of a cluster of networked, loosely
coupled computers, acting in concert to perform very large tasks.
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• Discrete time with slots 1, 2, . . . .

• Facility of size Q (either given, or to be determined), costing c
per slot to operate.

• In slot t agent i has utility θi,t
√
xi, where θi,t are i.i.d. ∼ Fi.

Resource sharing problem: At each time t allocate resource to
maximize sum of utilities, and obtain payments to cover the cost.

maximize
{xi}

∑N
i=1 θi,t

√
xi , such that

∑N
i=1 xi ≤ Q.

Solution:

xi =
θ2i,t

∑N
k=1

θ2
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Q , Vi,t =
θ2i,t

√

∑N
k=1

θ2
k,t

√
Q , Vt =

√
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θ2
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√
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If E[Vt] > c, we could ask agent i to make payment pi such that
E[Vi,t] ≥ pi and

∑

i pi = c.



Note that this is not the same as setting a price p and then letting
agent i to buy xi to maximize

θi,t
√
xi − pxi ,

where we choose p so that
∑N

i=1 xi ≤ Q.

The problem is that p
∑

k xk does not necessarily cover cost c.
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The general model

• N agents share common resource Q over time t = 1, 2, . . . .

• At time t agent i has utility θi,tu(xi), where
• u(·) convex increasing,
• xi is the amount of resource allocated to agent i,
• θi,t is its personalization parameter, i.i.d., realized from some

distribution Fi (e.g., U [0, φi]).

• System operates according to some ‘rules of a game’ G.

• Aim: design G so that at the Nash equilibrium the expected
sum of net benefits of the agents is maximized while
recovering a cost c per slot in the long run.

The size Q may be determined as part of the game, given c(Q).

Each agent should be better of by participating in this system than
by building his own facility.
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The game G

System designer posts operating rules of the facility,

1. Participants chose contracts (*), i.e., they implicitly reveal
something of their private information. They may make some
initial payments depending on the contracts chosen.

2. The facility operates in discrete slots t = 1, 2, . . . . At each t
the agents derive value from the facility and may make further
payments to cover the running cost. Agents may also be
asked to disclose some further private information regarding
their utility of the service at time t (**).

3. The resource sharing and the payment policies take into
account the information provided in (*) and (**).
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Example: allocating a single item

We wish to share a single machine between 2 agents. On day t
agent i has utility θi,t, where F1 = U [0, 1] and F2 = U [0, 2] are
distributions that are known to system operator. How do we
allocate the machine and take payments to cover the cost c?

Lets first consider a simple intuitive policy (A1):

• Set a price p for using the machine.

• If just one agent wants to use it, he gets it and pays p
E.g. agent 2 gets it if θ1,t < p < θ2,t

• If both agents want to use it, agent 2 gets it and pays p.

• Choose p so that expected payment per time slot is c.
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Using an auction

Can we do any better? The theory of optimal auctions suggests
the following scheme.

• Pick a nonnegative real number b and construct the prices

p1 = max{b, θ2,t − b}, p2 = max{2b, θ1,t + b} .

• Ask agents to reveal their θi,t. If θi,t > pi, the machine is
allocated to agent i and he pays pi (This cannot hold for both
1 and 2.)

• Choose b so that expected payment per slot is c.

This solution maximizes sum of expected agent utilities conditional
on recovering c on the average, is incentive compatible. Note that
agent 1 can win even if θ1,t < θ2,t.
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What did we learn?

The cost coverage constraint requires we make inefficient
allocations. I.e., we should not simply allocate the resource to the
agent who declares the greatest θi.

But if there is infinite repetition over many slots, this simplifies
the problem significantly. If we know the types of the agents and
can police them we can easily achieve efficient allocation:

1. Assume that the system will run with full information at each
t; charge each agent a fixed payment/slot less than his
average utility/slot, to cover cost.

2. Ask the value of the θi,t at each t and share the server
efficiently; police the declarations according to the Fis.

This scheme is incentive compatible (not immediate, requires a
proof).

Open problem: optimal scheme if we do not know the Fis?
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Issues for this talk

Problem of private information. What are sensible resource
allocation policies in shared infrastructures when participants have
private information?

Naive policies (like ‘internal market’, or ‘equal sharing’) may not
be suitable.

We wish to

• eliminate the free-rider problem;

• incentivize agents to truthfully reveal private information.

Key observation: agents will adopt strategies that depend on how
a system is operated.
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Example: a Bridge

A bridge may or may not be built. There are 2 potential users.

Mathematical Bridge, Queens’ College, Cambridge

If it is built (at cost $1) then user i benefits by $θi.
Knowing θ1 and θ2, we should build the bridge if θ1 + θ2 > 1.

If we build the bridge we must charge for the cost.
Suppose we decide to charge user i a fee of θi/(θ1 + θ2).

Problem: user i has incentive to under-report his true value of θi.

Fees should incentivize users to truthfully reveal θ1, θ2, with

p1(θ1, θ2) + p2(θ1, θ2) = 1 or 0 , as bridge is built or not built .
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Example: a Bridge

In the example above the bridge is a nonrivalrous good.

But what if its use is rivalrous?

E.g., suppose that on each given day only one person may use the
bridge. On each day, users 1 and 2 wish to use the bridge,
independently, with probabilities α1 and α2.

Now we must decide (as functions of the initially declared θ1, θ2)

• whether or not the bridge is built;

• what contributions the users should make towards its cost;

• who gets to use the bridge on those days that both users say
that they wish to do so.



Motivation

Similarly, in grid computing:

• how do we incentivize agents to participate and contribute
computational resource?

• what size of computational resource will be installed?
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what amounts of resource should they be willing to
contribute?
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Motivation

Similarly, in grid computing:

• how do we incentivize agents to participate and contribute
computational resource?

• what size of computational resource will be installed?

• what contributions should agents make towards its cost — or
what amounts of resource should they be willing to
contribute?

• how should the resource be shared?

Are auction and mechanism design theory appropriate? And under
what assumptions on our model are these applicable?

What is fundamentally new in this problem?

Can we describe optimal policies?
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Our infrastructure optimization problem

Our infrastructure optimization problem is as follows.

• Say how the infrastructure will be operated for possible subset
of users S.

• Say what fees will be collected from users.

Do the two things above, as function of declared θi, so that:

1. Users find it in their best interest to truthfully reveal their θi.

2. Users see positive expected net benefit from participation.

3. Expected total fees cover the daily running cost, say c.

4. Expected social welfare (total net benefit) is maximized
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Assumptions

Two possibilities:

1. The facility already exists; it has fixed size Q and known
operating cost, or

2. The facility does not exist; its size will be the sum of
participants’ contributions.

How to share resources and recover costs?

• Easy when we know utilities of participants.

• In practice agents’ utilities are private information.
We must design the system to operate well, under the
constraint that each agent will reveal information in a manner
that is to his best advantage.
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Example: scheduling a server

• Suppose N agents share a single server. Agent i generates a
jobs as a Poisson process of rate λi, whose service times are
exponentially distributed with parameter 1.

• Initially, agents contribute resource amounts y1, . . . , yN . This
results in a server of rate

∑

k yk. Under FCFS scheduling all
jobs have mean waiting time 1/(

∑

k yk −
∑

k λk).

• Agent i suffers delay cost, so his net benefit is, say,

nbi = λir − θiλi
1

∑

k yk −
∑

k λk
− yi .

θi is private information of agent i, but it has an a priori

distribution that is public information.
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form y(θi) from some subset of agents i = 1, . . . , j (a set with
smallest θi).
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Optimal queue scheduling

Instead of declaring contributions they are willing to make, we can
imagine that agents (equivalently) declare their θi.

Suppose θ1 < θ2 < · · · < θn.

As a function of these declarations we take contributions of the
form y(θi) from some subset of agents i = 1, . . . , j (a set with
smallest θi).

We employ a priority scheduling policy in which priority is always
given to the current job belonging to the agent with greatest θi.

Under this scheme, an agent with too great a θi will find
unprofitable to consider participating.

yi(θi) is increasing in θi, and is determined by an incentive
compatibility condition.


	Motivation
	A 'market solution'
	A `rule-based solution'
	Building a facility from scratch
	Proportional sharing
	The exact solution
	A large N solution

	Incentivizing declaration of activity frequencies
	Grid computing
	A simple example with full information
	Our model
	The game G
	Example 3: allocating a single item
	Using an auction
	Comparing the policies

	What did we learn?
	Example: a Bridge
	Assumptions

