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Games in Ad-Hoc Networks
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Competitive Ad-Hoc Networks

• Consider a decentralized and competitive network of users fighting

for the resources (i.e., spectrum):

• Game theory is a very adequate mathematical framework to analyze

such systems and design effective strategies.
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Signal Model for Ad-Hoc Networks

• Signal received by link q, for carriers k = 1, . . . , N :

yqq (k) = Hqq (k)xq (k) +
∑

r 6=q

Hqr (k)xr (k) + wq (k) .

• The optimization variables correspond to the power allocation over

the carriers: pq = {pq(k)}
N

k=1.

• There is a power budget for each user:

N∑

k=1

pq(k) ≤ Pq.
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• The payoff for user q is the transmission rate:

Rq (pq,p−q) =
N∑

k=1

log (1 + sinrq(k))

where

sinrq(k) =
|Hqq(k)|

2
pq(k)

1 +
∑

r 6=q |Hrq(k)|
2
pr(k)

.

• The feasible set for the variables is

Pq =

{
pq ∈ R

N
+ :

N∑

k=1

pq(k) = Pq

}
.
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Game Formulation for Ad-Hoc Networks

• Each of the Q users selfishly maximizes its own rate subject to the

constraints:

maximize
pq

∑N

k=1 log (1 + sinrq(k))

subject to pq ∈ Pq

q = 1, . . . , Q.

• The best response for each user has a nice and simple closed-form

expression:

p⋆
q = wfq (p−q)

where wfq (p−q) , (µq − interf q)
+

is the waterfilling operator.

• Different researchers have actively worked on this problem since

2001 [Yu-Ginis-Cioffi’01].
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• The Nash Equilibrium (NE) is a simultaneous waterfilling for all

users:

p⋆
q = wfq

(
p⋆
−q

)
q = 1, . . . , Q.

• Convex game ⇒ the existence of a NE follows readily.

• We can devise different iterative algorithms based on the waterfilling

best response.

• New interpretation of waterfilling as a projection [ScuPalBar’06]:

pq = [−interf q]Pq
.

• With this new interpretation, it is simple to show uniqueness of NE

and prove convergence of iterative waterfilling algorithms (IWFA).
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Asynchronous IWFA

• Users update the power allocation in a totally asynchronous way

based on wfq (·):

– users may update at arbitrary and different times and more or less

frequently than others

– users may use an outdated measure of interference

• Theorem [ScuPalBar’06]: The asynchronous IWFA converges to
the unique NE if ρ (Hmax) < 1, where

[Hmax]qr ,





max
k∈Dr∩Dq

{
|Hrq(k)|2

|Hqq(k)|2

}
if q 6= r

0 otherwise.

and Dq = {1, . . . , N} − {bad subcarriers}.
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Games in Cognitive Radio (CR) Systems
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CR Systems

• Consider now an established network of primary users on top of

which some secondary users play the previous game.

• Hierarchical CR networks

– PU=Primary users (legacy spectrum holders)

– SU=Secondary users (unlicensed users)
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• Opportunistic communications: SUs can use the spectrum subject

to not inducing too much interference on the PUs.

• The previous iterative waterfilling algorihm does not work because

it violates the interference constraint:
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Signal Model for CR Systems

• Same signal model as for ad-hoc networks with the additional

temperature-interference constraints:

|Gqp(k)|
2
pq(k) ≤ αp

where |Gqp(k)|
2

is the cross-channel gain between the qth secondary

and the pth primary user and αp is the maximum level of interference

tolerable by the primary user from each secondary user.

• Equivalently, we can write these constraints as

pq(k) ≤ pmax
q (k) ∀k, q.
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Game Formulation for Ad-Hoc Networks

• Each of the Q users selfishly maximizes its own rate subject to the

constraints:

maximize
pq

∑N

k=1 log (1 + sinrq(k))

subject to
∑N

k=1 pq(k) ≤ Pq

0 ≤ pq(k) ≤ pmax
q (k), ∀k

∀q = 1, . . . , Q.

• The best response in this case also has a nice and simple closed-form

expression based on a modified waterfilling with clipping from above:

w̃fq (p−q) , [µq − interf q]
pmax

0
.

• The analysis of this game and the algorithms are similar to the

previous one.
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• However, this method may be too conservative as the level of

interference from each secondary user is limited individually in a

conservative way:
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Revised Signal Model for CR Systems

• The really important quantity is not the individual interference

generated by each secondary user but the aggregate interference

generated by all of them.

• We can then limit the aggregate interference instead:

Q∑

q=1

|Gqp(k)|
2
pq(k) ≤ αp.

• This will achieve our goal without being conservative or accidentally

violating the limit.
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• Indeed, this new reformulation achieves our goal in a remarkable

way:
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• The price to pay for including the coupling constraints is twofold:

– on a mathematical level, it complicates the analysis of the game

and its design

– on the practical side, this new game must include some mechanism

to calculate the aggregate interference.

• For the practical aspect, one approach is to allow the primary

users to estimate the aggregate interference and then broadcast a

minimum of signaling. But this only makes sense if the signaling is

really minimum and scales nicely.

• For the mathematical analysis and design, we need more advance

tools: variational inequality theory.
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Variational Inequality (VI) Theory
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The Variational Inequality Problem

• Given a closed and convex set K ⊆ R
n and a mapping F : K → R

n,

the VI problem VI(K,F) is to find a vector x⋆ ∈ K such that

(y − x⋆)
T
F (x⋆) ≥ 0 ∀y ∈ K.

• The VI(K,F) reduces to the minimum principle (convex optimization

problems) if F = ∇f

VI(K,∇f) ⇐⇒ min
x∈K

f(x)

• The VI(K,F) encompasses a wider range of problems than clas-

sical optimization whenever F 6= ∇f (⇔ F has not a symmetric

Jacobian).
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• Other classical problems that fall in the VI framework:

– System of equations: K = R
n ⇒ VI(K,F)⇔ F(x) = 0

– Nonlinear complementarity problem (NCP): K = R
n
+ ⇒ VI(K,F) ⇔

NCP(F)

NCP(F) : 0 ≤ x⋆ ⊥ F(x⋆) ≥ 0

(The NCP is a unifying mathematical framework for linear pro-

gramming, quadratic programming, and bi-matrix games.)

– Fixed-point problems: F = x−G(x)⇒ VI(K,F)⇔ K ∋ x = G(x)

– Nash equilibrium problems (NEP): K =
∏

qKq and F(x) = (Fq(x))Q
q=1

with Fq = ∇xqfq(xq,x−q)⇒

VI(K,F) ⇐⇒ min
xq∈Kq

fq(xq,x−q), ∀q = 1, . . . , Q.
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Formulation of the Game with Coupling Constraint

• Recall the game formulation with the coupling constraint:

G :
maximize

pq≥0

∑N

k=1 log (1 + sinrq(k))

subject to
∑N

k=1 pq(k) ≤ Pq

∀q = 1, . . . , Q

Q∑

q=1

|Gqp(k)|
2
pq(k) ≤ αp ∀p = 1, . . . , P.

• This is a GNEP with a common constraint.

• It can be “rewritten” as a VI problem (caveat: only the variational

solutions with common multipliers are considered).
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Formulation of the Game with Coupling Constraint

via Pricing

• To deal with coupling interference constraints while keeping the

optimization as decentralized as possible we introduce pricing:

Gλ :
maximize

pq≥0
rq(pq,p−q)−

∑P

p=1

∑N

k=1 λp,k |Gqp(k)|
2
pq(k)

subject to
∑N

k=1 pq(k) ≤ Pq

∀q

where the prices λp,k ≥ 0 are chosen such that

(CC) : 0 ≤ λp,k ⊥ αp,k −

Q∑

q=1

|Gqp(k)|
2
pq(k) ≥ 0 ∀p, ∀k

• We will now rewrite the game G , Gλ ∪ (CC) as a VI problem.
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• Theorem 1 (Game as a VI): The game G is equivalent to the
VI(K,F) where

K ,



p ∈ R

NQ
+ :

N∑

k=1

pq(k) ≤ Pq and

Q∑

q=1

|Gqp(k)|
2
pq(k) ≤ αp,k, ∀ q, p , k





and

F(p) ,



−∇p1r1(p)

...

−∇rpQ
(p)


 .

• The equivalence is in the following sense:

– If pVI is a solution of the VI, then there exist multipliers λ
VI

such that (pVI,λVI) is an equilibrium pair of G

– Conversely, if (pNE,λNE) is an equilibrium pair of G, then pNE

is a solution of the VI, and λ
NE are multipliers of the VI.
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Results from the VI Framework: Solution Analysis

• Using the VI framework we can study existence/uniqueness of the

solution and devising distributed algorithms.

• Let’s introduce now the interference violation function Φ(λ) :
R

PN
+ ∋ λ 7→ R

PN

Φ : λ 7→





αp,k −

Q∑

q=1

|Gqp(k)|2 p⋆
q (k; λ)




N

k=1




P

p=1

(1)

where p⋆(λ) =
(
(p⋆

q(k;λ))N
k=1

)Q

q=1
is a Nash equilibrium of Gλ for

a given λ =
(
(λp,k)

N
k=1

)P

p=1
.

Daniel P. Palomar 25



• Theorem 2 (Existence and Uniqueness of the NE of G):

– The VI(K,F) always admits a solution pVI (the NE of G)

– If Υ ≻ 0 then

∗ pVI is unique and G is equivalent to the NCP in the price λ

NCP(Φ) : 0 ≤ λ ⊥ Φ(λ) ≥ 0

∗ the game G has a unique least-norm price tuple λ
NE,lm.

• The uniqueness is only in the powers but not in the prices. However,

under Υ ≻ 0, all the optimal prices (=solutions to NCP) yield the

same unique optimal powers pVI.

• The NCP reformulation is instrumental to devise distributed algo-

rithms.
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Distributed Algorithms based on VI

Algorithm 1: Projection algorithm with constant step-size

(S.0) : Choose any λ
(0) ≥ 0, and the step size τ > 0, and set n = 0

(S.1) : If λ
(n) satisfies a suitable termination criterion: STOP

(S.2) : Given λ
(n), compute p⋆(λ(n)) as the NE solution of the NEP

Gλ with fixed prices λ = λ
(n)

(S.3) : Update the price vectors:

λ
(n+1) =

[
λ

(n) − τ Φ
(
λ

(n)
)]+

(2)

(S.4) : Set n← n + 1; go to (S.1)
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• The NE p⋆(λ(n)) of G
λ

(n) can be computed using the asynchronous

IWFA (convergence is guaranteed under Υ ≻ 0).

• Distributed implementation: at the interation n, the PUs measure

the interference violation Φ
(
λ

(n)
)
, update the prices λ

(n+1) via

the projection (2), and broadcast λ
(n+1) to the SUs who play the

game G
λ

(n+1) (asynchronous IWFA).

• Theorem 3 (Global convergence): Suppose Υ ≻ 0. If the step-

size τ is sufficiently small, then the sequence {λ(n)}∞n=0 generated

by Algorithm 1 converges to a solution of the NCP(Φ).

• Several other algorithms have been considered that differ in the

trade-off between SUs/PUs signaling, computational complexity,

convergence conditions.
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Numerical Results
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Achieved Sum-Rate
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Convergence of Outer Loop
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Convergence of Inner Loop
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Summary

• We have considered different game formulations of relevant wireless

networks, starting from simple ad-hoc networks and building up

to more complicated cognitive radio systems with temperature-

interference constraints.

• The proper way to deal with temperature-interference constraints

involves a coupling constraint in the game.

• Variational Inequality theory is a perfect mathematical framework

for the analysis and design of such coupled games, both in theory

and practice.
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End of Talk

Thank you !!

For more information visit:

http://www.ece.ust.hk/˜palomar
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Deleted Parts

• The Q×Q Z-matrix Υ

[Υ ]qr ,





1 if q = r

− max
1≤ k ≤N

{
|Hqr(k)|

2

|Hrr(k)|
2 · innrqr(k)

}
if q 6= r,

(3)

with

innrqr(k) ,
σ2

r(k) +
∑

r
′ |H

rr
′(k)|2pmax

r
′ (k)

σ2
q(k)
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