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Games in Ad-Hoc Networks
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Competitive Ad-Hoc Networks

e Consider a decentralized and competitive network of users fighting

for the resources (i.e., spectrum):
Ao
g \w‘i’
9’ S

e Game theory is a very adequate mathematical framework to analyze

such systems and design effective strategies.
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Signal Model for Ad-Hoc Networks

e Signal received by link ¢, for carriers k =1,..., N:

Yaq (k) = Hgq (k) zq (k) + Z Hy (k) - (k) + wq (K) .

e [he optimization variables correspond to the power allocation over
. N
the carriers: pg = {py(k)},_,-

e There is a power budget for each user:

N
qu(k) < By
k=1
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e T he payoff for user q is the transmission rate:

¢ (Pg, P Zlog + sinry(k))

where

sinry(k) = | Hyq(R)[” py(K) .
T e L [Heg (k)P (k)

e [ he feasible set for the variables is

P, = {pq e Rf : qu(k) = Pq}.

k=1
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Game Formulation for Ad-Hoc Networks

e Each of the (Q users selfishly maximizes its own rate subject to the
constraints:

maximize Zi\;llog (1 + sinry(k))
Pq g=1,...,0.
subject to p, € Py

e The best response for each user has a nice and simple closed-form
expression:

P; = wf, (P—¢)
where wf, (p_,) = (1, — interf,)™ is the waterfilling operator.

e Different researchers have actively worked on this problem since
2001 [Yu-Ginis-Cioffi'01].
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e The Nash Equilibrium (NE) is a simultaneous waterfilling for all
users:

pgzwfq(p’:q) g=1,...,0.
e Convex game = the existence of a NE follows readily.

e We can devise different iterative algorithms based on the waterfilling
best response.

e New interpretation of waterfilling as a projection [ScuPalBar'06]:
Pq = [—interfq]Pq.

e With this new interpretation, it is simple to show uniqueness of NE
and prove convergence of iterative waterfilling algorithms (IWFA).
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Asynchronous IWFA

e Users update the power allocation in a totally asynchronous way
based on wf, (+):

— users may update at arbitrary and different times and more or less
frequently than others

— users may use an outdated measure of interference

e Theorem [ScuPalBar’06]: The asynchronous IWFA converges to
the unique NE if p (H™®) < 1, where

|Hyq(K)*) .
.F
H) A { keD D, { z,kEf al

0 otherwise.

and D, ={1,..., N} — {bad subcarriers}.
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Games in Cognitive Radio (CR) Systems

Daniel P. Palomar

10



CR Systems

e Consider now an established network of primary users on top of
which some secondary users play the previous game.

h\ D

e Hierarchical CR networks

— PU=Primary users (legacy spectrum holders)
— SU=Secondary users (unlicensed users)
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e Opportunistic communications: SUs can use the spectrum subject

to not inducing too much interference on the PUs.

e T[he previous iterative waterfilling algorihm does not work because
It violates the interference constraint:
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Signal Model for CR Systems

e Same signal model as for ad-hoc networks with the additional
temperature-interference constraints:

Gp(k) ’2pq(k) <

where |Gy, (k)|” is the cross-channel gain between the gth secondary
and the pth primary user and «,, is the maximum level of interference
tolerable by the primary user from each secondary user.

e Equivalently, we can write these constraints as

pe(k) < p**(k) Vk,q.

q
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Game Formulation for Ad-Hoc Networks

e Each of the () users selfishly maximizes its own rate subject to the
constraints:

maximize ij:l log (1 4 sinry(k))
Pq

subject to S0, pa(k) < P, Vg=1,...,Q.
0 < py(k) < p(k), Vk
e The best response in this case also has a nice and simple closed-form

expression based on a modified waterfilling with clipping from above:

max

V/\;‘?q (P—q) = [1q — interf ]y

e The analysis of this game and the algorithms are similar to the
previous one.
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e However, this method may be too conservative as the level of
interference from each secondary user is limited individually in a
conservative way:

Interference received by the primary user
T T T T T T T T T T T
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Revised Signal Model for CR Systems

e The really important quantity is not the individual interference
generated by each secondary user but the aggregate interference
generated by all of them.

e We can then limit the aggregate interference instead:
’ 2
Z Gap(k)|" pg(k) < oy
q=1

e [ his will achieve our goal without being conservative or accidentally
violating the limit.
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e Indeed, this new reformulation achieves our goal in a remarkable
way:

Interference received by the primary user
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e The price to pay for including the coupling constraints is twofold:

— on a mathematical level, it complicates the analysis of the game
and its design

— on the practical side, this new game must include some mechanism
to calculate the aggregate interference.

e For the practical aspect, one approach is to allow the primary
users to estimate the aggregate interference and then broadcast a
minimum of signaling. But this only makes sense if the signaling is
really minimum and scales nicely.

e For the mathematical analysis and design, we need more advance
tools: variational inequality theory.
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Variational Inequality (VI) Theory
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The Variational Inequality Problem

e Given a closed and convex set L C R™ and a mapping F : £ — R",
the VI problem VI(C,F) is to find a vector x* € K such that

(y — x*)" F(x*) >0 Vy € K.

e The VI(I, F) reduces to the minimum principle (convex optimization
problems) if F =V f

VIIK,Vf) <= min f(x)

xeC

e The VI(IC,F) encompasses a wider range of problems than clas-

sical optimization whenever F # Vf (< F has not a symmetric
Jacobian).
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e Other classical problems that fall in the VI framework:
— System of equations: K =R" = VI(K,F) & F(x) =0
— Nonlinear complementarity problem (NCP): K = R? = VI(K,F)
NCP(F)
NCP(F): 0 < x* L F(x*) >0
(The NCP is a unifying mathematical framework for linear pro-

gramming, quadratic programming, and bi-matrix games.)
— Fixed-point problems: F = x — G(z) = VI(K,F) & K 3> x = G(x)

— Nash equilibrium problems (NEP): K =[], K, and F(x) = (Fy(x)),
with F, =V, fo(x4,x_4) =

VIIK,F) <= min f,(x4,%x_¢), Vg=1,...,0.
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Formulation of the Game with Coupling Constraint

e Recall the game formulation with the coupling constraint:

.o N :
;. mapéléryze > 1—q1log (1 +sinry(k)) Va—1.....0
subject to Zgzlpq(k) < P,

Q
> |Gk pg(k) <oy Vp=1,...,P
qg=1

e [hisis a GNEP with a common constraint.

e It can be “rewritten” as a VI problem (caveat: only the variational
solutions with common multipliers are considered).

Daniel P. Palomar 22



Formulation of the Game with Coupling Constraint
via Pricing

e To deal with coupling interference constraints while keeping the
optimization as decentralized as possible we introduce pricing:

Imi P N 2
Gy mapélg)lze Tq(Pgs P—q) = D pe1 2 et Mook | Gap(K)|” Dy (R) v

subject to Zi\;lpq(k) < P,

where the prices A, > 0 are chosen such that

Q
(CC) - 0<Apr L apr— Z |qu(k)‘2pq(k) > 0 vp, Vk
q=1

e We will now rewrite the game G = Gy U (CC) as a VI problem.
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e Theorem 1 (Game as a VI): The game G is equivalent to the
VI(KC,F) where

N Q
K2 {p eRY? Y py(k) < Pyand Y [Gop(k)|* py(k) <y, Vo, p,k}
k=1 q=1

and —Vplﬁ(p)
F(p) = f
_VTPQ(p)

e The equivalence is in the following sense:

— If pY! is a solution of the VI, then there exist multipliers AV
such that (pV!, )\VI) is an equilibrium pair of G

— Conversely, if (pNE, A" is an equilibrium pair of G, then pNE
Is a solution of the VI, and ANE gre multipliers of the VI.
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Results from the VI Framework: Solution Analysis

e Using the VI framework we can study existence/uniqueness of the
solution and devising distributed algorithms.

e Let's introduce now the interference violation function ®(\) :
REN 5\ — RPN

P

0 N
QA (Oép,k ~ > Gk 1] (k;A)> (1)

p=1

where p*(A) = ((p;(k;)\))]k\f:l)f:]L is a Nash equilibrium of G for
. P
a given A= ((Apk)p1), ;-
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e Theorem 2 (Existence and Uniqueness of the NE of G):

— The VI(K,F) always admits a solution p¥! (the NE of G)
— If Y = 0 then
« p'! is unique and G is equivalent to the NCP in the price A

NCP(P) : 0<AL®PAN>0
+ the game G has a unique least-norm price tuple AN,

e [he uniqueness is only in the powers but not in the prices. However,
under Y > 0, all the optimal prices (=solutions to NCP) yield the
same unique optimal powers p"'.

e The NCP reformulation is instrumental to devise distributed algo-
rithms.
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Distributed Algorithms based on VI

Algorithm 1: Projection algorithm with constant step-size

(8.0) : Choose any A0 > 0, and the step size 7 > 0, and set n = 0
(S.1) : If A" satisfies a suitable termination criterion: STOP

(S.2) : Given A, compute p*(A™) as the NE solution of the NEP
G with fixed prices A = A

(S.3) : Update the price vectors:

A1) _ { I ( >\<n>)} i (2)

(S.4) : Setn«+n—+1;goto (S.1)
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e The NE p*()\(")) of G, (n) can be computed using the asynchronous
IWFA (convergence is guaranteed under Y > 0).

e Distributed implementation: at the interation n, the PUs measure
the interference violation ® (A(”)), update the prices A" via

the projection (2), and broadcast A" ™) to the SUs who play the
game G, (n+1) (asynchronous IWFA).

e Theorem 3 (Global convergence): Suppose X = 0. If the step-
size T is sufficiently small, then the sequence {A\™}>°, generated
by Algorithm 1 converges to a solution of the NCP(®).

e Several other algorithms have been considered that differ in the
trade-off between SUs/PUs signaling, computational complexity,
convergence conditions.
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Numerical Results
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Rates of the secondary users

Convergence of Inner Loop

Inner loop convergence
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Summary

e We have considered different game formulations of relevant wireless
networks, starting from simple ad-hoc networks and building up
to more complicated cognitive radio systems with temperature-
interference constraints.

e The proper way to deal with temperature-interference constraints
involves a coupling constraint in the game.

e Variational Inequality theory is a perfect mathematical framework
for the analysis and design of such coupled games, both in theory
and practice.
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End of Talk

Thank you !

For more information visit:

http://www.ece.ust.hk /" palomar

Daniel P. Palomar

36



Deleted Parts

e The ) x () Z-matrix Y
1 fqg=r

: innrqr(k)} it q £, 3)

with ) )
oy (k) + 2, |H, (k)|[“p5**(k)

/
T
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