Plug-and-Play Control and Optimization in Microgrids

Florian Dörrler
ETH Zürich

LCCC Dynamics and Control in Networks Workshop

Paradigm shifts in the operation of power networks

Traditional **top to bottom** operation:
- generate/transmit/distribute power
- hierarchical control & operation

Smart & green **power to the people**:
- high renewable penetration
- distributed generation & deregulation
- demand response & load control

Microgrids

Structure
- low-voltage distribution networks
- grid-connected or islanded
- autonomously managed

Applications
- hospitals, military, campuses, large vehicles, & isolated communities

Benefits
- naturally distributed for renewables
- flexible, efficient, & reliable

Operational challenges
- volatile dynamics & low inertia
- plug’n’play & no central authority

Conventional control architecture from bulk power ntwks

1. **Primary control** (fast)
 - Goal: stabilization & load sharing
 - Strategy: decentralized

2. **Secondary control** (slower)
 - Goal: maintain operating point
 - Strategy: centralized

3. **Tertiary control** (offline)
 - Goal: optimize operation
 - Strategy: centralized & forecast

⇒ break vertical & horizontal hierarchy
A preview – plug-and-play control and optimization
flat hierarchy, distributed, no time-scale separations, & model-free . . .

Outline

Introduction

Primary Control

Tertiary Control

Secondary Control

P-n-P Experiments

Conclusions

Modeling: a microgrid is a circuit

- **synchronous (& acyclic) AC circuit** with harmonic waveforms $E_i e^{i(\theta_i + \omega t)}$

- **ZIP loads**: constant impedance, current, & power $P_i^* + iQ_i^*$ *(today)*

- **coupling** via Kirchhoff & Ohm

- purely inductive lines $G/B \approx 0$ *(can be relaxed to $G/B = \text{const}$.)*

- decoupling: $P_i \approx P_i(\theta)$ & $Q_i \approx Q_i(E)$ *(near operating point)*

 - active power: $P_i = \sum_j B_{ij} E_i E_j \sin(\theta_i - \theta_j) + G_{ij} E_i E_j \cos(\theta_i - \theta_j)$
 - reactive power: $Q_i = -\sum_j B_{ij} E_i E_j \cos(\theta_i - \theta_j) + G_{ij} E_i E_j \sin(\theta_i - \theta_j)$

Modeling: a microgrid is a circuit

- **synchronous (& acyclic) AC circuit** with harmonic waveforms $E_i e^{i(\theta_i + \omega t)}$

- **ZIP loads**: constant impedance, current, & power $P_i^* + iQ_i^*$ *(today)*

- **coupling** via Kirchhoff & Ohm

- purely inductive lines $G/B \approx 0$ *(can be relaxed to $G/B = \text{const}$.)*

- decoupling: $P_i \approx P_i(\theta)$ & $Q_i \approx Q_i(E)$ *(near operating point)*

 - trigonometric active power flow: $P_i(\theta) = \sum_j B_{ij} \sin(\theta_i - \theta_j)$
 - polynomial reactive power flow: $Q_i(E) = -\sum_j B_{ij} E_i E_j$ *(not today)*
Modeling: sources interfaced with inverters
(all results also apply to synchronous machines & frequency-dependent loads)

Power inverters are . . .
• interfaces between
 ◦ the AC microgrid and
 ◦ DC & variable AC sources
• controllable (voltage) sources
[Zhong & Hornik, '12]

\[\omega_{\text{sync}} \]

Decentralized primary control of active power

Inverters are controlled to emulate the physics of synchronous generators.
[Chandorkar et. al. '93]

Intuition: Recall...

\[
P_i(\theta) = \sum_{j=1}^{n} B_{ij} \sin(\theta_i - \theta_j)
\]

\[
P_i \dot{\theta}_i \rightarrow \text{droop control: } \frac{1}{D_i} \left(P_i^* - P_i(\theta) \right)
\]

Putting the pieces together...
differential-algebraic closed loop

network physics

load power balance: \(P_i^* = \sum_j B_{ij} \sin(\theta_i - \theta_j) \)
source injections: \(P_i(\theta) = \sum_j B_{ij} \sin(\theta_i - \theta_j) \)

\[
\dot{\theta}_i = \frac{1}{D_i} \left(P_i^* - P_i(\theta) \right)
\]

\[
\text{loads: } 0 = P_i^* - \sum_j B_{ij} \sin(\theta_i - \theta_j)
\]

\[
\text{sources: } D_i \dot{\theta}_i = P_i^* - \sum_j B_{ij} \sin(\theta_i - \theta_j)
\]
Closed-loop stability under droop control

Theorem: stability of droop control
[J. Simpson-Porco, FD, & F. Bullo, ’12]

∃ unique & exp. stable frequency sync ⇐⇒ active power flow is feasible

Main proof ideas and some further results:
• synchronization frequency:
 \[\omega_{\text{sync}} = \omega^* + \frac{\sum_{\text{inverters}} P_i^* + \sum_{\text{loads}} P_i^*}{\sum_{\text{inverters}} D_i} \]
 (∝ power balance)

• steady-state power injections:
 \[P_i = \begin{cases} P_i^* & \text{for loads} \\ P_i^* - D_i(\omega_{\text{sync}} - \omega^*) & \text{for inverters} \end{cases} \]
 (depend on \(D_i \) & \(P_i^* \))

• unique steady-state branch flows:
 \[\xi_{ij} = B_{ij} \sin(\theta_i^* - \theta_j^*) \Rightarrow B_{ij} \geq \xi_{ij} \]
 (\(P_i \mapsto \xi_{ij} \))

Objective I: decentralized proportional load sharing

1) Inverters have injection constraints:
 \(P_i(\theta) \in [0, \bar{P}_i] \)

2) Load must be serviceable:
 \[0 \leq \left| \sum_{\text{loads}} P_j^* \right| \leq \sum_{\text{inverters}} \bar{P}_j \]

3) Fairness: load should be shared proportionally:
 \(P_i(\theta)/\bar{P}_i = P_j(\theta)/\bar{P}_j \)

Objective I: decentralized proportional load sharing

1) Inverters have injection constraints:
 \(P_i(\theta) \in [0, \bar{P}_i] \)

2) Load must be serviceable:
 \[0 \leq \left| \sum_{\text{loads}} P_j^* \right| \leq \sum_{\text{inverters}} \bar{P}_j \]

3) Fairness: load should be shared proportionally:
 \(P_i(\theta)/\bar{P}_i = P_j(\theta)/\bar{P}_j \)

Theorem: fair proportional load sharing
[J. Simpson-Porco, FD, & F. Bullo, ’12]

Let the droop coefficients be selected proportionally:

\[D_i/\bar{P}_i = D_j/\bar{P}_j \quad \& \quad P_i^*/\bar{P}_i = P_j^*/\bar{P}_j \]

The the following statements hold:

(i) Proportional load sharing:
 \(P_i(\theta)/\bar{P}_i = P_j(\theta)/\bar{P}_j \)

(ii) Constraints met:
 \[0 \leq \left| \sum_{\text{loads}} P_j^* \right| \leq \sum_{\text{inverters}} \bar{P}_j \ \Leftrightarrow \ P_i(\theta) \in [0, \bar{P}_i] \]
Objective I: fair proportional load sharing
proportional load sharing is not always the right objective

Objective II: optimal economic dispatch
minimize the total accumulated generation

\[
\begin{align*}
\text{minimize } & \theta \in \mathbb{T}^n, u \in \mathbb{R}^n \\
\text{subject to } & \\
\text{inverter power balance: } & P_i^* + u_i = P_i(\theta) \\
\text{load power balance: } & P_i^* = P_i(\theta) \\
\text{branch flow constraints: } & |\theta_i - \theta_j| \leq \gamma_{ij} < \pi/2 \\
\text{inverter injection constraints: } & P_i(\theta) \in [0, \bar{P}_i]
\end{align*}
\]

Problem is generally non-convex and feasible only if the load is serviceable

In conventional power system operation, the economic dispatch is
• solved offline, in a centralized way, & with a model & load forecast

In an autonomously managed microgrid, the economic dispatch should be
• solved online, in a decentralized way, & without knowing a model

Objective II: decentralized dispatch optimization
Insight: droop-controlled microgrid = decentralized primal algorithm

Theorem: optimal droop
[FD, J. Simpson-Porco, & F. Bullo, ’14]
The following statements are equivalent:
(i) the economic dispatch with cost coefficients \(\alpha_i \) is strictly feasible with global minimizer \((\theta^*, u^*) \).
(ii) \(\exists \) droop coefficients \(D_i \) such that the microgrid possesses a unique & locally exp. stable sync’d solution \(\theta \) satisfying \(P_i(\theta) \in [0, \bar{P}_i] \).
If (i) & (ii) are true, then \(\theta_i \sim \theta_i^*, u_i^* = -D_i(\omega_{\text{sync}} - \omega^*), \quad \text{and} \quad D_i \alpha_i = D_j \alpha_j \).

• similar results hold for the general constrained case
• similar results hold for the general constrained case
Secondary frequency control in power networks

Problem: steady-state frequency deviation ($\omega_{\text{sync}} \neq \omega^*$)

Solution: integral control

<table>
<thead>
<tr>
<th>Interconnected Systems</th>
<th>Isolated Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Centralized automatic generation control (AGC)</td>
<td>• Decentralized PI control</td>
</tr>
<tr>
<td>P_1</td>
<td>P_m</td>
</tr>
<tr>
<td>P_L</td>
<td>P_{ref}</td>
</tr>
<tr>
<td>ω_{ref}</td>
<td>ω^*</td>
</tr>
<tr>
<td>$\Delta \omega$</td>
<td>$\Delta \omega$</td>
</tr>
<tr>
<td>$K_{\text{ω}}$</td>
<td>$K_{\text{ω}}$</td>
</tr>
<tr>
<td>s</td>
<td>s</td>
</tr>
<tr>
<td>Σ</td>
<td>Σ</td>
</tr>
</tbody>
</table>

compatible with econ. dispatch

[N. Li, L. Chen, C. Zhao, & S. Low ’13]

is globally stabilizing

[C. Zhao, E. Mallada, & FD, ’14]

Secondary frequency control in power networks

Problem: steady-state frequency deviation ($\omega_{\text{sync}} \neq \omega^*$)

Solution: integral control

<table>
<thead>
<tr>
<th>Interconnected Systems</th>
<th>Isolated Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Centralized automatic generation control (AGC)</td>
<td>• Decentralized PI control</td>
</tr>
<tr>
<td>P_1</td>
<td>P_m</td>
</tr>
<tr>
<td>P_L</td>
<td>P_{ref}</td>
</tr>
<tr>
<td>ω_{ref}</td>
<td>ω^*</td>
</tr>
<tr>
<td>$\Delta \omega$</td>
<td>$\Delta \omega$</td>
</tr>
<tr>
<td>$K_{\text{ω}}$</td>
<td>$K_{\text{ω}}$</td>
</tr>
<tr>
<td>s</td>
<td>s</td>
</tr>
<tr>
<td>Σ</td>
<td>Σ</td>
</tr>
</tbody>
</table>

compatible with econ. dispatch

[N. Li, L. Chen, C. Zhao, & S. Low ’13]

is globally stabilizing

[C. Zhao, E. Mallada, & FD, ’14]

Distributed Averaging PI (DAPI) control

$$D_i \dot{\theta}_i = P_i^* - P_i(\theta) - \Omega_i$$

$$k_i \dot{\theta}_i = D_i \dot{\theta}_i - \sum_{j \subseteq \text{inversors}} a_{ij} \cdot \left(\frac{\Omega_i}{D_i} - \frac{\Omega_j}{D_j} \right)$$

- no tuning & no time-scale separation: $k_i, D_i > 0$
- distributed & modular: connected comm. \subseteq inverters
- recovers primary op. cond. (load sharing & opt. dispatch)

\Rightarrow plug’n’play implementation

Theorem: stability of DAPI

[J. Simpson-Porco, FD, & F. Bullo, ’12]

primary droop controller works \iff secondary DAPI controller works

Microgrids require **distributed** (I) secondary control strategies.
plug-and-play experiments

Plug’n’play architecture
recap of detailed signal flow (active power only)

Microgrid:
\[P_i = \sum_j B_{ij} \sin(\theta_i - \theta_j) \]
\[Q_i = -\sum_j B_{ij} E_i E_j \]

Primary control:
mimic oscillators & polyn. symmetry

Secondary control:
diffusive averaging of injection ratios

Tertiary control:
marginal costs \(\propto 1/\text{control gains} \)

Plug’n’play architecture
similar results in the reactive case

Microgrid:
\[P_i = \sum_j B_{ij} \sin(\theta_i - \theta_j) \]
\[Q_i = -\sum_j B_{ij} E_i E_j \]

Primary control:
mimic oscillators & polyn. symmetry

Tertiary control:
marginal costs \(\propto 1/\text{control gains} \)

Secondary control:
diffusive averaging of injection ratios
Plug’n’play architecture
experiments also work well in the coupled & lossy case

$$
\begin{align*}
\dot{P}_i &= \sum_j B_{ij} E_i E_j \sin(\theta_i - \theta_j) + G_{ij} E_i E_j \cos(\theta_i - \theta_j) \\
\dot{Q}_i &= -\sum_j B_{ij} E_i E_j \cos(\theta_i - \theta_j) + G_{ij} E_i E_j \sin(\theta_i - \theta_j)
\end{align*}
$$

Microgrid: physics & loadflow

Primary control: mimic oscillators & polyn. symmetry

Tertiary control: marginal costs $\propto 1/\text{control gains}$

Secondary control: diffusive averaging of injection ratios

Experimental validation of control & opt. algorithms
in collaboration with Q. Shafiee & J.M. Guerrero @ Aalborg University

Experimental validation of control & opt. algorithms
frequency/voltage regulation & active/reactive load sharing

Conclusions

1. $i \in [I_1, I_7]$ primary & tertiary control
2. $t=7s$: secondary control activated
3. $t=22s$: load $\neq 2$ unplugged
4. $t=36s$: load $\neq 2$ plugged back
Conclusions

Summary
- primary $P/\dot{\theta}$ droop control
- fair proportional load sharing & economic dispatch optimization
- distributed secondary control strategies based on averaging
- experimental validation

Further results
- reactive power control
- virtual oscillator control

Open conjecture
- solve these problems without comm

Acknowledgements

J. Simpson-Porco Q. Shafiee H. Bouattour B. Gentile A. Hamadeh
S. Dhople B. Johnson S. Zampieri J. Guerrero F. Bullo
J. Zhao S.Y. Caliskan P. Tabuada M. Rungger M. Todescato