
© 2014 VMware Inc. All rights reserved.

Application Performance Management
in the Cloud using Learning,
Optimization, and Control

Xiaoyun Zhu

May 9, 2014

47%

34%

Source: “The hidden costs of managing applications in the cloud,” Compuware/Research In Action White Paper, Dec. 2012,

based on survey results from 468 CIOs in Americas, Europe, and Asia.

Rising adoption of cloud-based services

2

64%

51%

44%

Source: “The hidden costs of managing applications in the cloud,” Compuware/Research In Action White Paper, Dec. 2012,

based on survey results from 468 CIOs in Americas, Europe, and Asia.

Application performance – a real concern

3

Application performance management is hard

4

Cloud

hosting

provider

Service Level Objective: 95% of all

transactions should be completed within 500ms

Many tenant

applications

SLO violation!

Performance

troubleshooting &

remediation

• On average, 46.2 hours spend in “war-room” scenarios each month

5

Source: Improving the usability of APM data: Essential capabilities and benefits. TRAC Research, June 2012, based on

survey data from 400 IT organizations worldwide

Challenges in managing application performance

APM-related problems we’re working on

• Real-time performance monitoring

 Infrastructure-level vs. application-level monitoring

• Automated performance modeling

 Knowledge-driven vs. data-driven

 Linear vs. nonlinear models

 Offline vs. online modeling

• Computer-assisted performance troubleshooting

 Correlation & model based problem localization

• Service level remediation via auto-scaling

 Horizontal vs. vertical scaling

6

Infrastructure-level performance monitoring

Physical host metrics

• System-level stats collected by the hypervisor
 e.g., esxtop – CPU, memory, disk, network, interrupt

• CPU stats

 %USED, %RUN, %RDY, %SYS, %OVRLP, %CSTP, %WAIT, %IDLE,
%SWPWT

• ~100s-1000s metrics per host!

VM metrics

• Resource usage stats collected by the guest OS

 e.g., dstat, iostat

• ~10s metrics per VM

• Widely available on most platforms

• Available at a time scale of seconds to minutes

Application-level performance monitoring

Metrics reflecting end user experience

• Response times

• Throughput (or errors such as timed out requests)

VMware Hyperic monitoring tool

• Agents deployed in VMs

• Auto-discovers types of applications running

• Plugins to extract application-related performance stats

• Stats available at a time scale of minutes

• Stats aggregated in Hyperic server

• Supports over 80 different application components

• Extensible framework to allow customized plugins

Source: “APM-generated big data boom.” Netuitive & APMDigest, July 2012, based on survey of US & UK IT professionals.

APM-generated big data

• “APM tools were part of the huge explosion in metric
collection, generating thousands of KPIs per application.”

• “83% of respondents agreed that metric data collection has
grown >300% in the last 4 years alone.”

• “88% of companies are only able to analyze less than half
of the metric data they collect… 45% analyze less than a
quarter of the data.”

• “77% of respondents cannot effectively correlate business,
customer experience, and IT metrics.”

9

10

“false

negatives”

Source: Improving the usability of APM data: Essential capabilities and benefits. TRAC Research, June 2012, based on

survey data from 400 IT organizations worldwide

Challenges in usability of performance data

The Semantic Gap challenge
Correlating performance data from different sources

11

Better IT analytics for APM automation
Three-pronged approach

12

Optimization

Control

Learning

Semantic gap filled by performance models
Leaning-based approach

Traditional models harder to apply

• First-principle models: Only exist for special cases (e.g., flow models)

• Queuing models: More suitable for aggregate/average behavior

• Architectural models: Require domain knowledge, harder to automate

Empirical models via statistical learning

• Data driven, easier to automate and scale

• Offline modeling usually insufficient

 Time-varying workloads

 Changing system/software configurations

• Online modeling (models updated on demand)

• Need to be low overhead and adaptive

13

Three key questions

• Q1: Which variables go into the model?

• Which system resources or parameters affect application
performance the most?

• Correlation-based analysis to provide hints

• Q2: What kind of model should we use?

• Nonlinear models - better accuracy in general

• Linear regression models - cheaper to compute and easier to
interpret

• Q3: How do we know our model is (still) accurate?

• Online change-point detection

14

Correlation and model based metric selection

15

Sensor Module

Application

performance metrics

(THP, MRT, RT95p)

Host metrics

(1000’s)

Guest VM metrics

(10’s)

Online Change-Point Detection Module

Re-train model? Yes/No

Online hypothesis testing

new samples

Model and top metrics

Metric Filtering & Model Building Module

Phase 1:

Correlation-based

filtering

Phase 2:

Model-based

filtering

raw metrics

Yes

suspicious

metrics

remediation

* P. Xiong et al. “vPerfGuard: An automated model-driven framework for application performance diagnosis in consolidated cloud

environments.” ICPE 2013.

16

Model retraining

Note: All models during the contention

period show CPU on ESX1 as the top

metric affecting application latency!

CPU contention

noisy neighbors

Intervals MRT Model

27 – 45 MRT = 1.13 H_ESX1_CPU_Util +

1.97 H_ESX4_Mem_Active – 89.7

46 – 74 MRT = 752.8

H_ESX1_CPULoad_1MinAvg – 562.9

75 – 89 MRT = 12.5

H_ESX1_Web_vCPU_Ready – 25.0

90 – 102 MRT = -7.70 H_ESX1_vCPU_Idle

+ 410.3

Case study: CPU contention with co-located VMs

Performance remediation
via auto-scaling

Challenges to ensure application performance

• Enterprise applications are distributed or multi-tiered

• App-level performance depends on access to many
resources

– HW: CPU, memory, cache, network, storage

– SW: threads, connection pool, locks

• Time-varying application behavior

• Dynamic and bursty workload demands

• Performance interference among co-hosted applications

18 18

Auto-Scaling to maintain application SLO

19

Front

Tier
DB Tier

End

User

Application Latency

Auto-Scaling to Maintain Application SLO

20

Front

Tier
DB Tier

End

User

Application Latency

Front

Tier
DB Tier

End

User

Application Latency

Horizontal scaling

Auto-Scaling to Maintain Application SLO

21

Front

Tier
DB Tier

End

User

Application Latency

Front

Tier
DB Tier

End

User

Application Latency

Vertical scaling Horizontal scaling

Horizontal scaling of applications

Academic research

• Muse: Managing energy and server resources in hosting centers (SOSP’01)

• A hybrid reinforcement learning approach to autonomic resource allocation

(ICAC’05)

• A lot of recent work scaling clusters of VMs

Commercial systems

• Amazon Web Services: http://aws.amazon.com/autoscaling/

• RightScale: http://www.rightscale.com

• Rule-based: User-set thresholds/alerts on resource utilization or load metrics

• Learning-based: Ongoing work at VMware

22

http://aws.amazon.com/autoscaling/
http://www.rightscale.com/

Vertical scaling of resource containers
Method 1: Dynamic resource control settings

• Available on various virtualization platforms

• For shared CPU, memory, disk I/O*, network I/O*:

– Reservation (R)* – minimum guaranteed amount of resources

– Limit (L) – upper bound on resource consumption (non-work-conserving)

– Shares (S) – relative priority during resource contention

• VM’s CPU/memory demand (D): estimated by hypervisor, critical to
actual allocation

23

R

L

VM configured size (C)
Actual-allocation =

f(R, L, S, D, Cap)

Available capacity

Vertical scaling of resource containers
Related work (not exhaustive)

• Tuning resource limits (aka. caps)

– Adaptive control of virtualized resources in utility computing environments
(Eurosys’07)

– Autonomic resource management in virtualized data centers using fuzzy-logic-based
applications (Cluster Computing Journal 2008)

– Memory overbooking and dynamic control for Xen virtual machines in consolidated
environment (IM’09, memory limit)

– Vertical scaling of prioritized VMs provisioning (CGC’12)

– Agile: Elastic distributed resources scaling for infrastructure-as-a-service (ICAC’13)

• Tuning resource shares (aka. weights)

– Maximizing server utilization while meeting critical SLAs via weight-based collocation
management (IM’13)

• Tuning resource reservations (aka. min)

– Application-driven dynamic vertical scaling of virtual machines in resource pools
(NOMS’14)

24

DRS (Distributed Resource Scheduler)
Resource pool hierarchy

• Capacity of an RP divvied hierarchically based on resource settings

• Sibling RPs share capacity of the VDC

• Sibling VMs share capacity of the parent RP

25

VDC

RP1

VM1 VM2 Web App DB

vApp1

RP2

vApp2

Web App DB

<R1, L1, S1> <R2, L2, S2>

<r, l, s>

* VMware distributed resource management: Design, implementation, and lessons learned, VMware Technical Journal,

April 2012.

Powerful knobs, hard to use

• How do VM-level settings impact application performance?

• How to set RP-level settings to protect high priority applications within
the RP?

• Fully reserved (R=L=C) for critical applications

– Leads to lower consolidation ratio due to admission control

• Others left at default (R=0, L=C) until performance problem arises

– Increases reservation for the bottleneck resource (which one? by how much?)

26

measured

performance p(t) per-VM resource settings

Web App DB

vApp

workload

Performance model learned for each vApp

Maps VM-level resource allocations to app-level performance

• Captures multiple tiers and multiple resource types

• Choose a linear regression model (easy to compute)

• Workload indirectly captured in model parameters

• Model parameters updated online in each interval (tracks nonlinearity)

27

per-VM memory usage uk
m(t)

measured

performance p(t)

per-VM CPU usage uk
c(t)

Web App DB

vApp Model

p(t) = f(u(t), l)

workload l

Rule-based vs. model-based feedback control

28

Rule-based Model-based

often involves no analytical

model

requires an analytical model

driven by intuition and domain

knowledge

driven by quantitative

relationships

hard to control multiple knobs at

the same time

captures interactions between

multiple metrics

no concern of dynamics considers dynamics and

transient responses

threshold and heuristics based standard control methods as

building blocks

no systematic consideration of

stability

systematically handles tradeoff

between stability & performance

Use optimization to handle design tradeoff

• An example cost function

• Solve for optimal resource allocations

29

22 ||)()1(||))1(())1((ttptptJ SLO uuu  

Tradeoff between

performance and stability

performance cost control cost

),),(,),(()1(* ltptpgtu SLO u

AppRM: Model-based vertical scaling

• Auto-tunes VM-level and RP-level resource control settings to meet
application SLOs
– For each application, vApp Manager translates its SLO into desired

resource control settings at individual VM level
– For each resource pool, RP Manager computes the actual VM- and RP-

level resource settings to satisfy all critical applications

30

Arbiter Actuator

Desired VM resource settings

VM1 VM2 VMn ...

App/System Sensors

vApp Manager

VM2 VMn ...

App/System Sensors

vApp Manager

VM1

vApp1 vApp2

Actual VM- or RP-level

settings via vSphere API

...

Resource Pool

(RP)

App-level

SLO

App-level

SLO

Resource Pool Manager

(RP Manager)

Performance evaluation

• Application

– MongoDB – distributed data processing application with sharding

– Rain – workload generation tool to generate dynamic workload

• Workload

– Number of clients

– Read/write mix

• Evaluation questions

– Can the vApp Manager meet

 individual application SLO?

– Can the RP Manager meet SLOs

 of multiple applications?

31

VM

Shard1

Shard2

Configsvr

Mongos

VM1

VM2

VM3

Testbed setup

• Two ESX 5.0 GA hosts

• ESX2 (12 cores, 96 GB) to emulate the capacity of a VDC

• Three VMs per MongoDB instance (2 vCPUs, 4 GB)

• One VM per instance of Rain, one VM for AppRM

32

0.1

1

10

100

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86

N
o

rm
al

iz
e

d
 R

e
sp

o
n

se
 T

im
e

Mean response time (target 300ms)

RT-scenario1 RT-scenario2 Target

control + continued-learning

Time interval (every 1 min)

Result: Meeting mean response time target

• Scenario1 - Initial settings: R = 0, Limit = 512 (MHz, MB)

• Scenario2 – Initial settings: R = 0, L = unlimited (cpu, mem)

33

Initial-learning

Resource utilization (under-provisioned case)

• Target response time = 300 ms

• Initial setting R = 0, L = 512 MHz/MB (under-provisioned)

34

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

1 11 21 31 41 51 61 71 81

C
P

U
 u

ti
liz

at
io

n

CPU utilization

Mongos-CPU Shard1-CPU Shard2-CPU

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

1 11 21 31 41 51 61 71 81

M
em

o
ry

 u
ti

liz
at

io
n

Memory utilization

Mongos-MEM Shard1-MEM Shard2-MEM

Vertical scaling of resource containers
Method 2: Runtime reconfiguration of VM sizes

• Configured size for a VM

– #vCPUs

– Memory size

– #virtual disks, disk sizes

– #vNICs

• ESX allows over-commitment of CPU and memory

– Sum(VM-size) >= host-capacity

• CPU/memory Hot-add supported by most recent OS’s

– Can be used to scale up a VM at runtime – work-in-progress

– Need application support to leverage additional resources

• CPU/memory Hot-remove unsupported by most OS’s

– Requires VM reboot (undesirable)

35

Recap:
APM automation requires better analytics

36

Optimization

Control

Learning

Online modeling of

application performance

Tradeoff between

competing goals

Model-driven online

adaptation in face of

uncertainty

References

• X. Zhu, et al. “What does control theory bring to systems research?” ACM SIGOPS
Operating Systems Review, 43(1), January 2009.

• P. Padala et al. “Automated control of multiple virtualized resources.” Eurosys 2009.

• A. Gulati et al. “Cloud scale resource management: Challenges and techniques.”

HotCloud 2011.

• A. Gulati et al. “VMware distributed resource management: Design, implementation, and

lessons learned.” VMware Technical Journal, Vol. 1(1), April 2012.

• P. Xiong et al. “vPerfGuard: An automated model-driven framework for application

performance diagnosis in consolidated cloud environments.” ICPE 2013.

• A. Gulati , “Towards proactive resource management in virtualized datacenters,”

RESoLVE 2013.

• L. Lu, et al., “Application-Driven dynamic vertical scaling of virtual machines in resource

pools.” to appear at NOMS 2014.

38

