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47% 

34% 

Source: “The hidden costs of managing applications in the cloud,” Compuware/Research In Action White Paper, Dec. 2012, 

based on survey results from 468 CIOs in Americas, Europe, and Asia. 

Rising adoption of cloud-based services 
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64% 

51% 

44% 

Source: “The hidden costs of managing applications in the cloud,” Compuware/Research In Action White Paper, Dec. 2012, 

based on survey results from 468 CIOs in Americas, Europe, and Asia. 

Application performance – a real concern 
 

3 



Application performance management is hard 
 

4 

Cloud 

hosting 

provider 

Service Level Objective: 95% of all 

transactions should be completed within 500ms 

Many tenant 

applications 

SLO violation! 

Performance 

troubleshooting & 

remediation 



 

 

 

 

 

 

 

 

 

 

• On average, 46.2 hours spend in “war-room” scenarios each month  
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Source: Improving the usability of APM data: Essential capabilities and benefits. TRAC Research, June 2012, based on 

survey data from 400  IT organizations worldwide  

Challenges in managing application performance 
 



APM-related problems we’re working on 

• Real-time performance monitoring 

 Infrastructure-level vs. application-level monitoring 

• Automated performance modeling 

 Knowledge-driven vs. data-driven 

 Linear vs. nonlinear models 

 Offline vs. online modeling 

• Computer-assisted performance troubleshooting 

 Correlation & model based problem localization 

• Service level remediation via auto-scaling 

 Horizontal vs. vertical scaling 
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Infrastructure-level performance monitoring 

Physical host metrics 

• System-level stats collected by the hypervisor 
 e.g., esxtop – CPU, memory, disk, network, interrupt 

• CPU stats 

 %USED, %RUN, %RDY, %SYS, %OVRLP, %CSTP, %WAIT, %IDLE, 
%SWPWT 

• ~100s-1000s metrics per host! 

 

VM metrics 

• Resource usage stats collected by the guest OS 

 e.g., dstat, iostat 

• ~10s metrics per VM 

 

• Widely available on most platforms 

• Available at a time scale of seconds to minutes 



Application-level performance monitoring 

Metrics reflecting end user experience 

• Response times 

• Throughput (or errors such as timed out requests) 

 

VMware Hyperic monitoring tool 

• Agents deployed in VMs 

• Auto-discovers types of applications running 

• Plugins to extract application-related performance stats 

• Stats available at a time scale of minutes 

• Stats aggregated in Hyperic server 

• Supports over 80 different application components 

• Extensible framework to allow customized plugins 



Source: “APM-generated big data boom.” Netuitive & APMDigest, July 2012, based on survey of US & UK IT professionals. 

APM-generated big data 

• “APM tools were part of the huge explosion in metric 
collection, generating thousands of KPIs per application.” 

• “83% of respondents agreed that metric data collection has 
grown >300% in the last 4 years alone.” 

• “88% of companies are only able to analyze less than half 
of the metric data they collect… 45% analyze less than a 
quarter of the data.” 

• “77% of respondents cannot effectively correlate business, 
customer experience, and IT metrics.” 
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10 

“false 

negatives”  

Source: Improving the usability of APM data: Essential capabilities and benefits. TRAC Research, June 2012, based on 

survey data from 400  IT organizations worldwide  

Challenges in usability of performance data 
 



The Semantic Gap challenge 
Correlating performance data from different sources 
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Better IT analytics for APM automation 
Three-pronged approach 
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Optimization 

Control 

Learning 



Semantic gap filled by performance models 
Leaning-based approach 

Traditional models harder to apply 

• First-principle models: Only exist for special cases (e.g., flow models) 

• Queuing models: More suitable for aggregate/average behavior 

• Architectural models: Require domain knowledge, harder to automate 

 

Empirical models via statistical learning 

• Data driven, easier to automate and scale 

• Offline modeling usually insufficient  

 Time-varying workloads 

 Changing system/software configurations 

• Online modeling (models updated on demand) 

• Need to be low overhead and adaptive 
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Three key questions 

• Q1: Which variables go into the model? 

• Which system resources or parameters affect application 
performance the most? 

• Correlation-based analysis to provide hints 

• Q2: What kind of model should we use?  

• Nonlinear models - better accuracy in general 

• Linear regression models - cheaper to compute and easier to 
interpret 

• Q3: How do we know our model is (still) accurate?  

• Online change-point detection 
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Correlation and model based metric selection 
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Sensor Module 

Application  

performance metrics 

(THP, MRT, RT95p) 

Host metrics 

(1000’s) 

Guest VM metrics 

(10’s) 

Online Change-Point Detection Module 

Re-train model? Yes/No 

Online hypothesis testing  

new samples 

Model and top metrics 

Metric Filtering & Model Building Module 

Phase 1:  

Correlation-based  

filtering 

Phase 2: 

Model-based  

filtering 

raw metrics  

Yes 

suspicious  

metrics 

remediation 

* P. Xiong et al. “vPerfGuard: An automated model-driven framework for application performance diagnosis in consolidated cloud 

environments.” ICPE 2013. 
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Model retraining 

Note: All models during the contention 

period show CPU on ESX1 as the top 

metric affecting application latency! 

CPU contention 

noisy neighbors 

Intervals MRT Model 

27 – 45 MRT = 1.13 H_ESX1_CPU_Util + 

1.97 H_ESX4_Mem_Active – 89.7 

46 – 74 MRT = 752.8 

H_ESX1_CPULoad_1MinAvg – 562.9 

75 – 89 MRT = 12.5 

H_ESX1_Web_vCPU_Ready – 25.0 

90 – 102 MRT = -7.70 H_ESX1_vCPU_Idle  

+ 410.3  

Case study: CPU contention with co-located VMs 
 



Performance remediation 
via auto-scaling 



Challenges to ensure application performance 

• Enterprise applications are distributed or multi-tiered 

• App-level performance depends on access to many 
resources 

– HW: CPU, memory, cache, network, storage 

– SW: threads, connection pool, locks 

• Time-varying application behavior 

• Dynamic and bursty workload demands 

• Performance interference among co-hosted applications 
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Auto-Scaling to maintain application SLO 
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Auto-Scaling to Maintain Application SLO 
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Horizontal scaling 



Auto-Scaling to Maintain Application SLO 
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Horizontal scaling of applications 

Academic research 

• Muse: Managing energy and server resources in hosting centers (SOSP’01) 

• A hybrid reinforcement learning approach to autonomic resource allocation 

(ICAC’05) 

• A lot of recent work scaling clusters of VMs 

Commercial systems 

• Amazon Web Services: http://aws.amazon.com/autoscaling/ 

• RightScale: http://www.rightscale.com 

• Rule-based: User-set thresholds/alerts on resource utilization or load metrics 

• Learning-based: Ongoing work at VMware 
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http://aws.amazon.com/autoscaling/
http://www.rightscale.com/


Vertical scaling of resource containers 
Method 1: Dynamic resource control settings 

• Available on various virtualization platforms 

• For shared CPU, memory, disk I/O*, network I/O*: 

– Reservation (R)* – minimum guaranteed amount of resources 

– Limit (L) – upper bound on resource consumption (non-work-conserving) 

– Shares (S) – relative priority during resource contention 

• VM’s CPU/memory demand (D): estimated by hypervisor, critical to 
actual allocation 
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R 

L 

VM configured size (C) 
Actual-allocation =  

f(R, L, S, D, Cap) 

Available capacity 



Vertical scaling of resource containers 
Related work (not exhaustive) 

• Tuning resource limits (aka. caps)  

– Adaptive control of virtualized resources in utility computing environments 
(Eurosys’07) 

– Autonomic resource management in virtualized data centers using fuzzy-logic-based 
applications (Cluster Computing Journal 2008) 

– Memory overbooking and dynamic control for Xen virtual machines in consolidated 
environment (IM’09, memory limit) 

– Vertical scaling of prioritized VMs provisioning (CGC’12) 

– Agile: Elastic distributed resources scaling for infrastructure-as-a-service (ICAC’13) 

• Tuning resource shares (aka. weights) 

– Maximizing server utilization while meeting critical SLAs via weight-based collocation 
management (IM’13) 

• Tuning resource reservations (aka. min) 

– Application-driven dynamic vertical scaling of virtual machines in resource pools 
(NOMS’14)  
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DRS (Distributed Resource Scheduler) 
Resource pool hierarchy 

 

 

 

 

 

 

 

 

 

• Capacity of an RP divvied hierarchically based on resource settings 

• Sibling RPs share capacity of the VDC 

• Sibling VMs share capacity of the parent RP 
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VDC 

RP1 

VM1 VM2 Web App DB 

vApp1 

RP2 

vApp2 

Web App DB 

<R1, L1, S1> <R2, L2, S2> 

<r, l, s> 

* VMware distributed resource management: Design, implementation, and lessons learned, VMware Technical Journal, 

April 2012. 



Powerful knobs, hard to use 

• How do VM-level settings impact application performance? 

• How to set RP-level settings to protect high priority applications within 
the RP? 

• Fully reserved (R=L=C) for critical applications 

– Leads to lower consolidation ratio due to admission control 

• Others left at default (R=0, L=C) until performance problem arises 

– Increases reservation for the bottleneck resource (which one? by how much?) 
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measured 
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Web App DB 
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Performance model learned for each vApp 

Maps VM-level resource allocations to app-level performance 

• Captures multiple tiers and multiple resource types  

• Choose a linear regression model (easy to compute)  

• Workload indirectly captured in model parameters  

• Model parameters updated online in each interval (tracks nonlinearity) 
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per-VM memory usage uk
m(t) 

measured 

performance p(t) 

per-VM CPU usage uk
c(t)  

Web App DB 

vApp Model 

p(t) = f(u(t), l) 
  

workload l 



Rule-based vs. model-based feedback control  
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Rule-based Model-based 

often involves no analytical 

model 

requires an analytical model 

driven by intuition and domain 

knowledge 

driven by quantitative 

relationships 

hard to control multiple knobs at 

the same time 

captures interactions between 

multiple metrics 

no concern of dynamics considers dynamics and 

transient responses 

threshold and heuristics based standard control methods as 

building blocks 

no systematic consideration of 

stability 

systematically handles tradeoff 

between stability & performance 



Use optimization to handle design tradeoff 

• An example cost function 

 

 

 

 

 

 

• Solve for optimal resource allocations 
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AppRM: Model-based vertical scaling 

• Auto-tunes VM-level and RP-level resource control settings to meet 
application SLOs 
– For each application, vApp Manager translates its SLO into desired 

resource control settings at individual VM level 
– For each resource pool, RP Manager computes the actual VM- and RP-

level resource settings to satisfy all critical applications 
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Arbiter Actuator 

Desired VM resource settings 

VM1 VM2 VMn ... 

App/System Sensors 

vApp Manager 

VM2 VMn ... 

App/System Sensors 

vApp Manager 

VM1 

vApp1 vApp2 

Actual VM- or RP-level 

settings via vSphere API 

... 

Resource Pool 

(RP) 

App-level 

SLO 

App-level 

SLO 

Resource Pool Manager 

(RP Manager) 



Performance evaluation 

• Application 

– MongoDB – distributed data processing application with sharding 

– Rain – workload generation tool to generate dynamic workload 

 

• Workload 

– Number of clients 

– Read/write mix 

 

• Evaluation questions 

– Can the vApp Manager meet  

 individual application SLO? 

– Can the RP Manager meet SLOs 

 of multiple applications? 
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Testbed setup 

• Two ESX 5.0 GA hosts 

• ESX2 (12 cores, 96 GB) to emulate the capacity of a VDC 

• Three VMs per MongoDB instance (2 vCPUs, 4 GB) 

• One VM per instance of Rain, one VM for AppRM 
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Mean response time ( target 300ms) 

RT-scenario1 RT-scenario2 Target

control + continued-learning 

Time interval ( every 1 min) 

Result: Meeting mean response time target 

• Scenario1 - Initial settings: R = 0, Limit = 512 (MHz, MB) 

• Scenario2 – Initial settings: R = 0, L = unlimited (cpu, mem) 
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Initial-learning 



Resource utilization (under-provisioned case) 

• Target response time = 300 ms 

• Initial setting R = 0, L = 512 MHz/MB (under-provisioned) 
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Vertical scaling of resource containers 
Method 2: Runtime reconfiguration of VM sizes 

• Configured size for a VM 

– #vCPUs 

– Memory size 

– #virtual disks, disk sizes 

– #vNICs 

• ESX allows over-commitment of CPU and memory  

– Sum(VM-size) >= host-capacity 

• CPU/memory Hot-add supported by most recent OS’s  

– Can be used to scale up a VM at runtime – work-in-progress 

– Need application support to leverage additional resources 

•  CPU/memory Hot-remove unsupported by most OS’s 

– Requires VM reboot (undesirable) 
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Recap: 
APM automation requires better analytics 
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Optimization 

Control 

Learning 

Online modeling of  

application performance 

Tradeoff between  

competing goals 

Model-driven online  

adaptation in face of 

uncertainty 
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