Cloud Control Systems -Real-Time Analytics

Dr. Simon Tuffs Cloudstream

http://tinyurl.com/qfyuyn2

Background

University of Oxford Self Tuning Control Systems/GPC 25 years software industry: highlights Iridium Ground Station (Motorola) Spacestation Infrastructure (Boeing) Cloud (Netflix)

• Theme: Software at Scale

This Talk

Cloud Based Service Applications Analytics & Control, how and why Cloud Applications As:

- Multi-variable time-series systems
- Amenable to signal processing
- Resilient to failure using analytics
- Operational using feedback control

Cloud Application Architectures

Cloud: Application Architectures

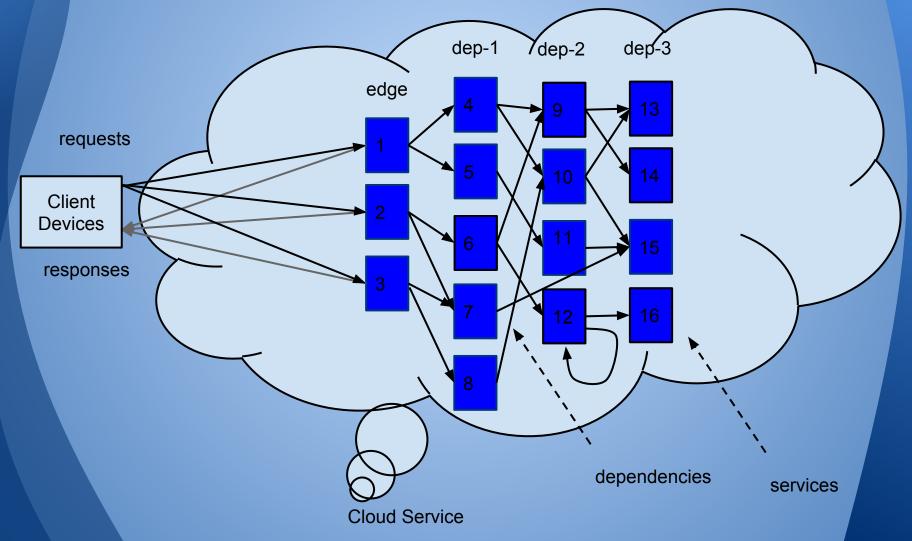
Classes

- Micro-service
 - Massive volume business operations (e.g. Netflix)
 - **Big-Data**
 - Terabytes of data, captured from streams into persistent stores.
 - Sparse compute intensive operations

Cloud: Application Architectures

- Cloud Application composed of services
 Services have dependencies (graph)
- Requests flow from the edge down
- Reponses flow back to edge
- Latencies accumulate forwards
- Errors propagate backwards
- Services are developed independently

Cloud: Application Architectures Services & Dependencies:



Cloud: Application Architectures But it isn't that simple A real dependency graph. services "Death Star Architecture"

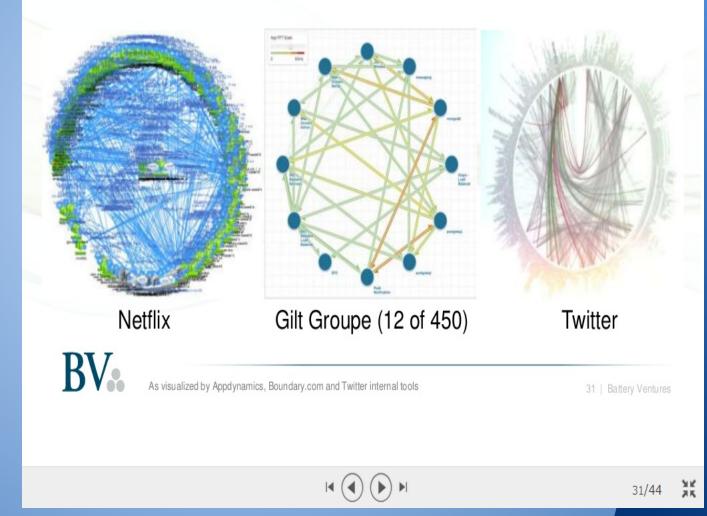
dependencies

"We are not alone"

Adrian Cockcroft: Monitorama 2014

⊡ Share

"Death Star" Architecture Diagrams



Cloud: Application Architectures

- Complex beyond human comprehension
 Nonlinear
- Time-varying
- Partially predictable
- Potentially chaotic
- The worst kind of "system"

Analytics are not optional, they are essential

Cloud Applications: Analytics Classes

- Operational
 - Availability, fault detection, repair, peformance optimization
 - **Business Intelligence**
 - o how much money are we making?
 - how many customers did we just lose?
 - how can we make more money?

Cloud Applications: Monitoring

To analyze you must monitor
How do you handle billions of events?
How do you transform them for analytics?

Cloud Applications: Monitoring

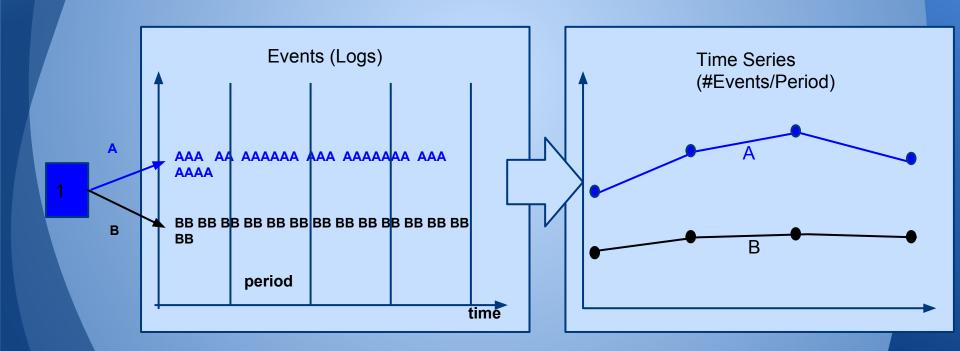
Instrument services:

to expose internal details (e.g. type of errors, versus HTTP 503's)

• With significant request volume:

- monitored events become statistically driven time-series
- signal processing methods then apply

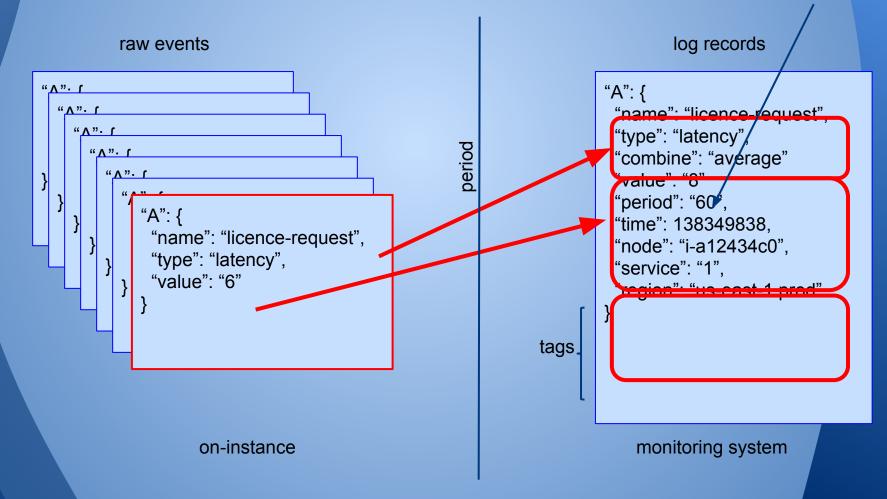
Cloud: Monitoring From Events To Time Series:



Cloud: Monitoring Architecture

- Convert events to time-series (coordinate transform)
 - bucket by period
 - classify & tag
 - store for query/retrieval
- Reduces dimension of data by many orders of magnitude
 - -> Real Time Analytics become feasible

Cloud: Monitoring Architecture Events -> Logs -> Timeseries



What to Monitor?

 "Assume that any metrics not being analyzed will turn out to be garbage"
 Adrian Cockcroft, Architect Netflix Cloud
 Instrument to measure:

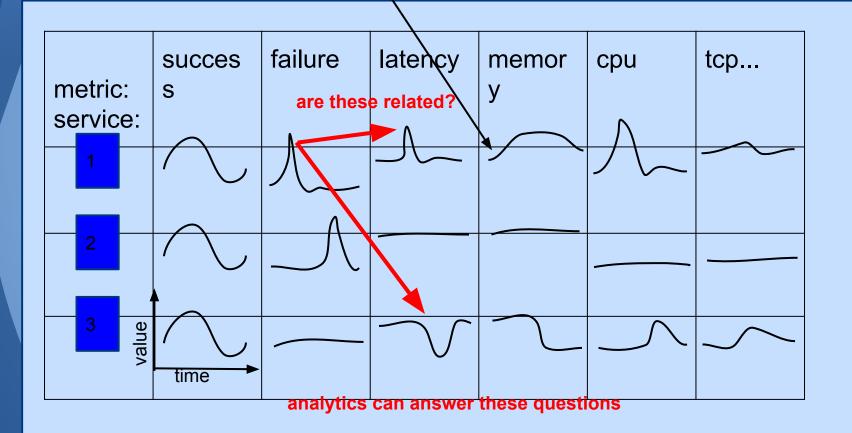
- health (success, failure)
- performance (load, cpu)
- availability (timeouts, fallbacks)
- resources (disk i/o, memory, handles),
- sla's (latency)

Visualization as an Analytic

Service Metric Visualization

- Classify metrics by type
- View services as rows of service:metrics
- Patterns start to emerge between visually.
- This scales to 100's of services and metrics (make the graphs small, human visual cortex sees patterns)

Cloud: Visualizing service:metric 、



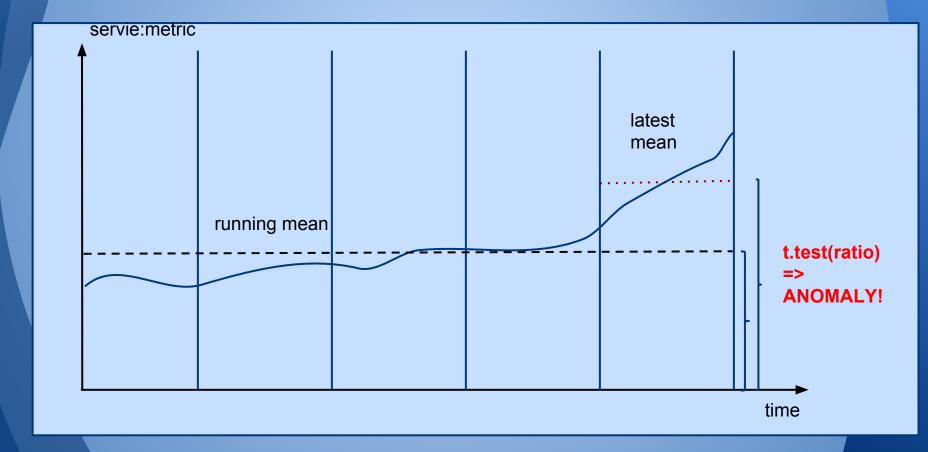
Beyond Visualization: Computational Analytics

Anomaly Detection & Diagnosis

Anomaly Detection

- Look at a service:metric
- Is it behaving normally, or is it showing signs of distress?
- How can we automate this?
- Without lots of configuration?
- In a scale invariant way?
- Use a mean-shift analytic...

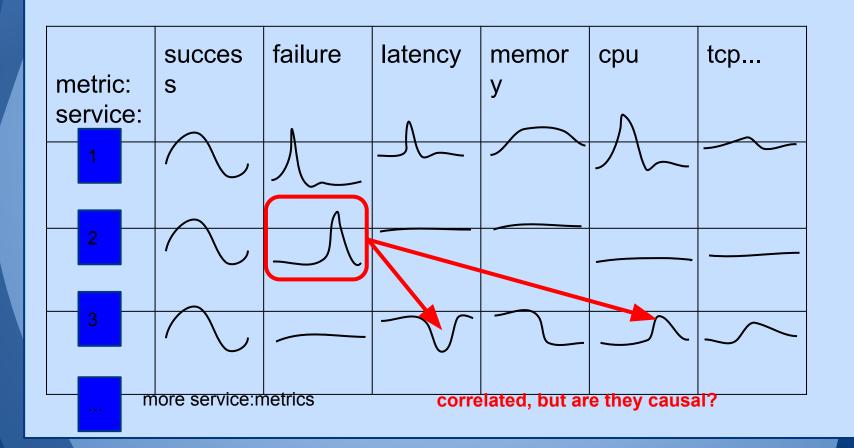
Analytics for Anomalies?mean? variance?



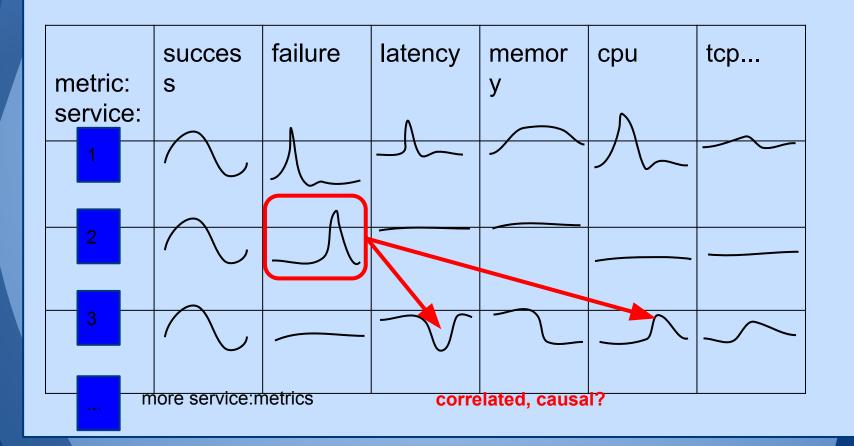
Analytics for Anomalies?

- You found an anomalous service:metric, now what?
- Correlate against *all other* service metrics
- This is fast (<0.1s for 400sm in R)

CorrelatePearson + mean removal



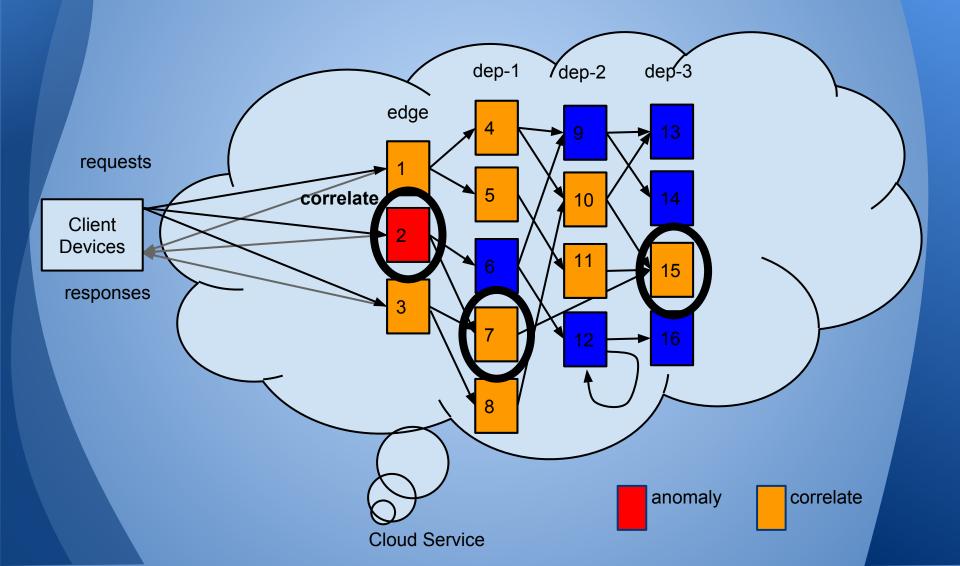
FilterIncrease signal-to-noise:



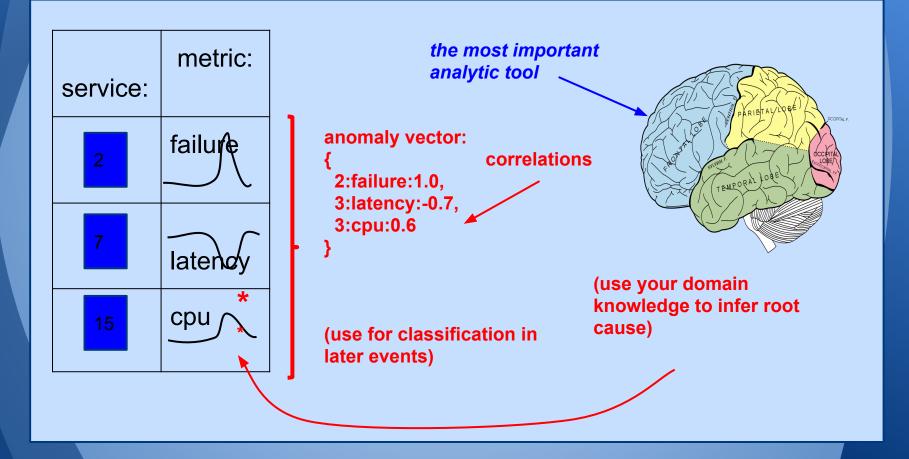
Can we do more?

Correlation x Dependency = Probable Cause

Anomaly -> Correlation -> Cause



Classify and Decide.Prune with dependency tree



Build a model

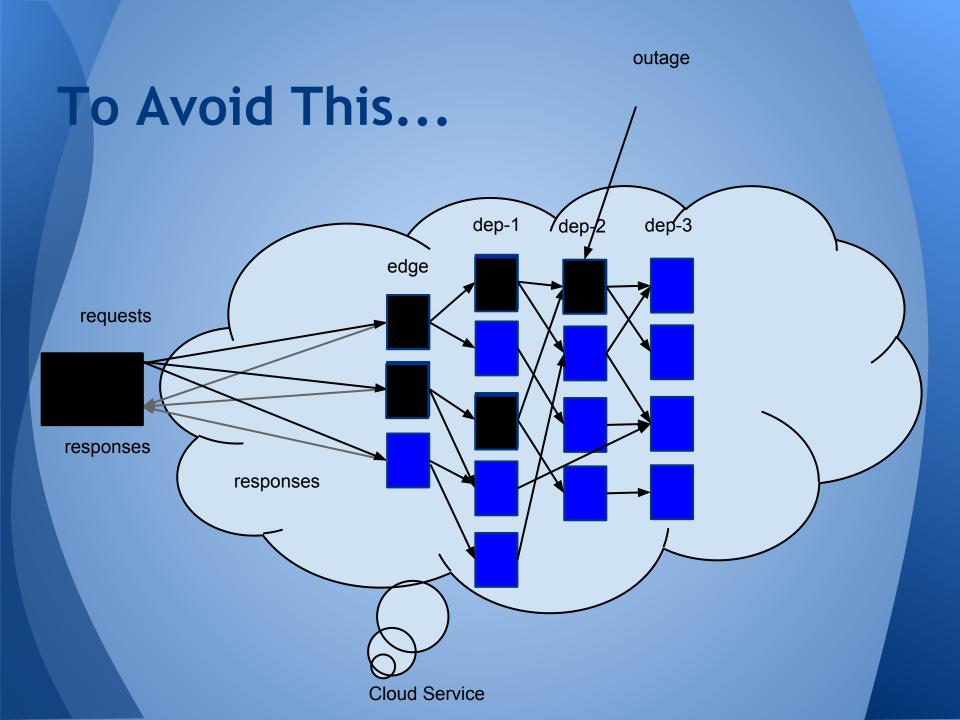
- Persist this pattern for future causal analysis
- Did we see this anomaly vector before?

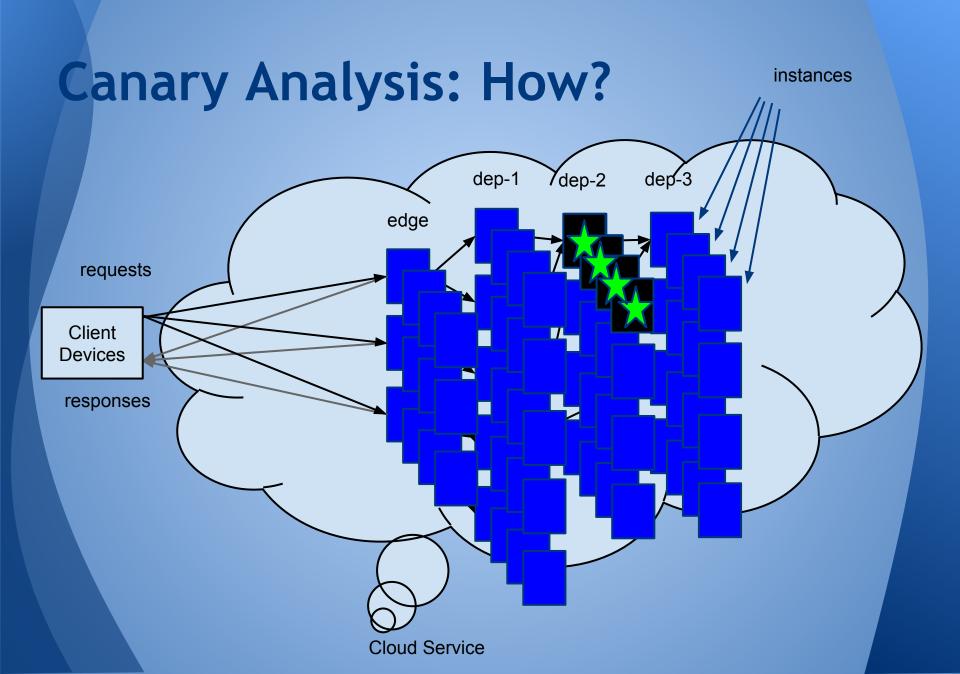
Canary Analysis (deployment)

Canary Analysis Defined

• For a given service:

- Deploy new code to limited #instances
- Analyze against existing production code
- Decide whether good or bad
- Push forward (upgrade all service instances)
 or roll back.



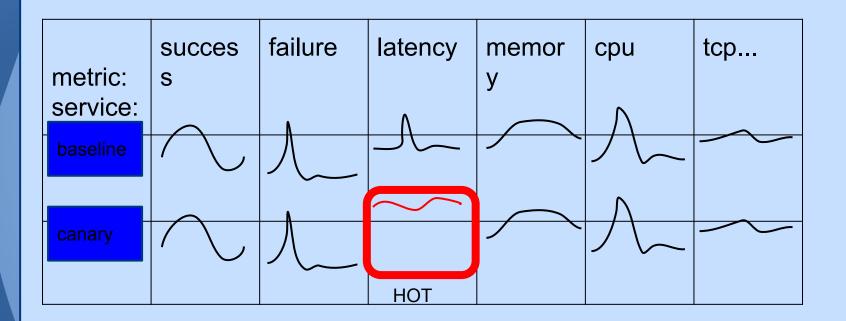


Canary Analysis

How does this work?

- Service metric grid (again), 2 rows.
- Compare canary to baseline, statistical tests.

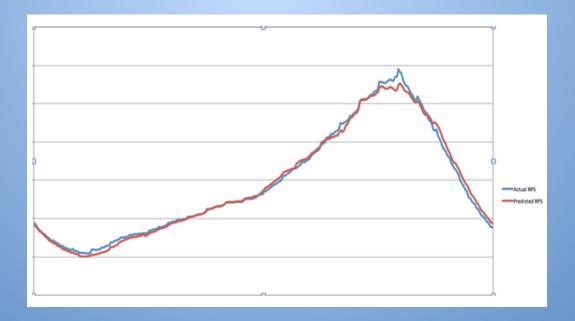
Automated Canary Analysis



Autoscaling

Load Based Autoscaling

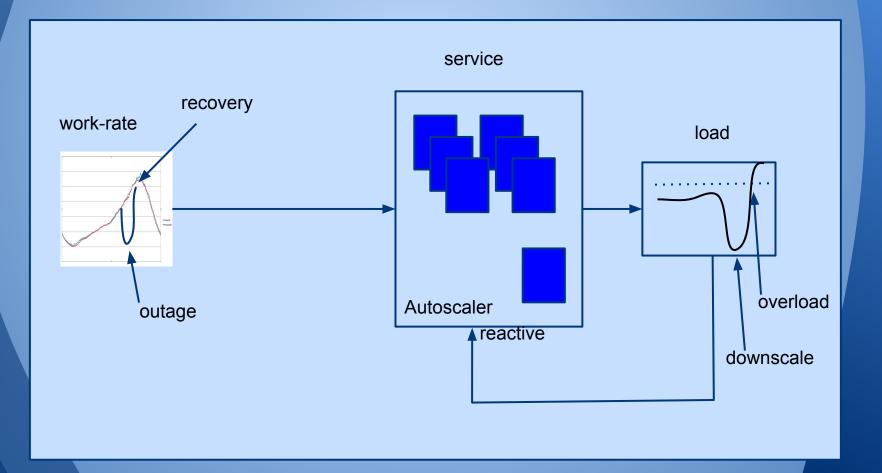
increase #instances when load increases
decrease #instances when load decreases
works well...



Except when it doesn't..

- During an outage, load drops
 Instances are terminated
- Instances are terminated
- Service becomes underprovisioned for return to normal request rate
- Overload occurs
- Other services suffer.
- Chaos.

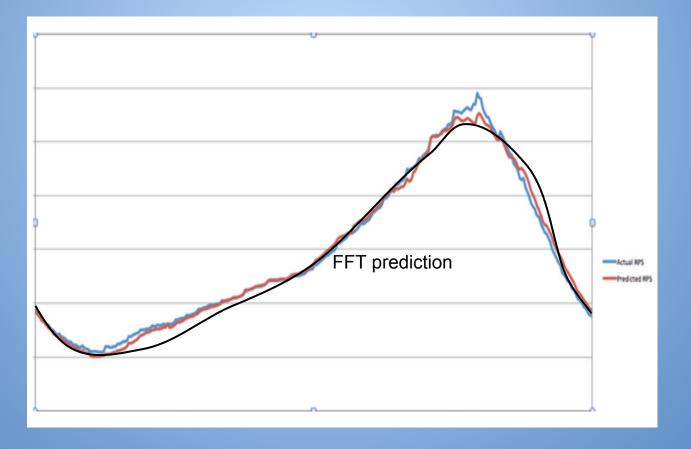
Reactive Autoscaling



How do you avoid this?

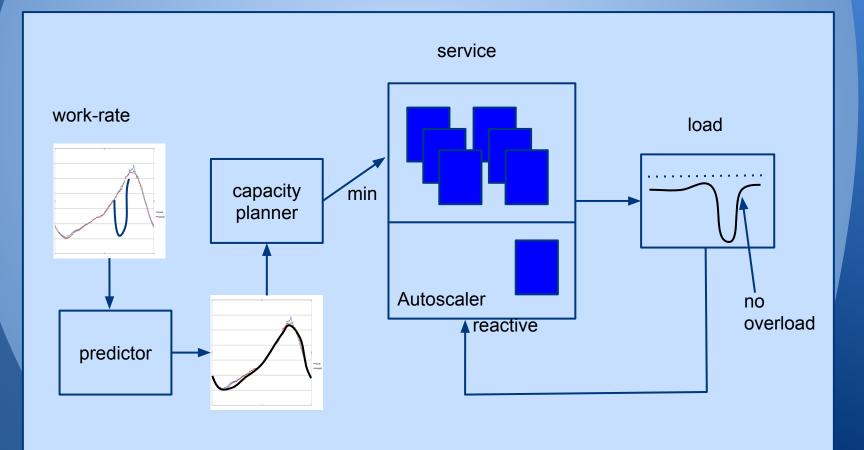
Use feedforward control
Base on prediction of request rate
Simple application of FFT low-pass filter.

ScryerFFT based prediction



Netflix: Scryer

Predictive+Reactive = Feedback Control



Real Time Analytics Engine

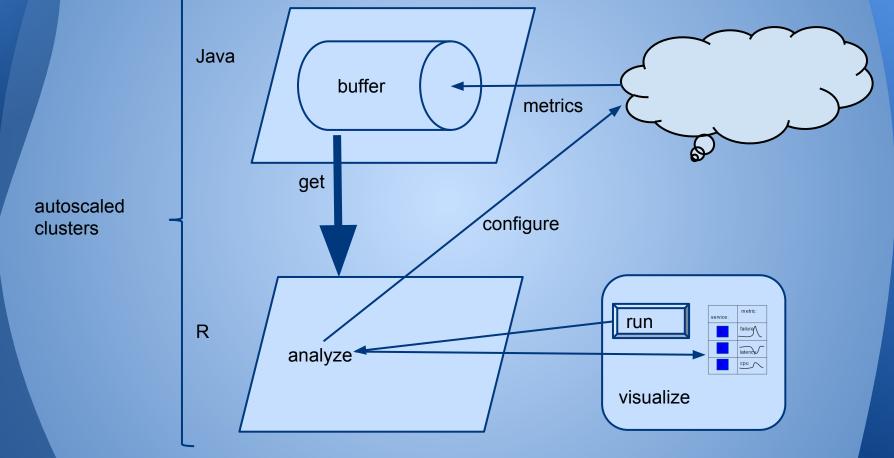
Analytics at Scale How do you do analytics at scale? • Do monitoring at scale Do data-collection & buffering at scale Run Analytics at scale • Use the Cloud to achieve scale. • (But use a different Cloud).

Analytics at Scale

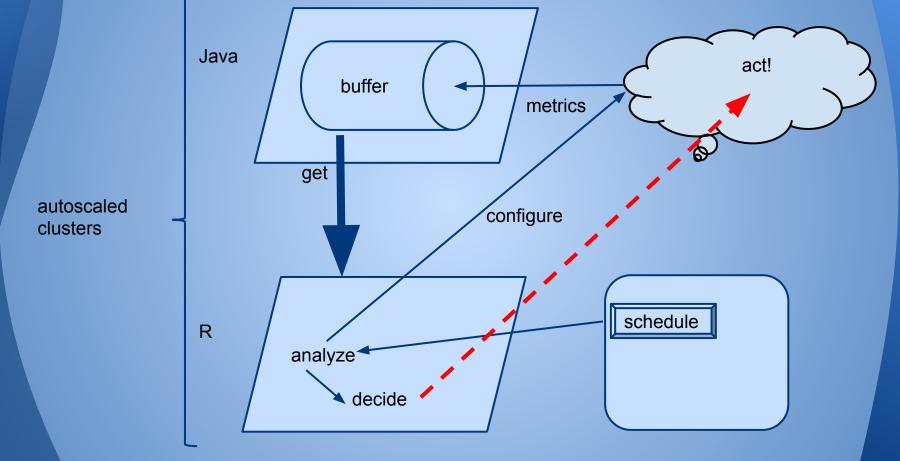
One possible architecture: Java and R engines in the Cloud

- gathering data
- running analytics
- performing visualization
- doing notification

Cloud Analytics: Interactive



Cloud Analytics: Automated



Analytics Challenges

Cloud Analytics: Big Challenges

- instance outlier detection at scale
- tuning queues & timeouts for services
- detection of overload/underprovision
- anomaly detection (prediction)
- behavior pattern classification
- automatic alert tuning
 - "closing the loop"

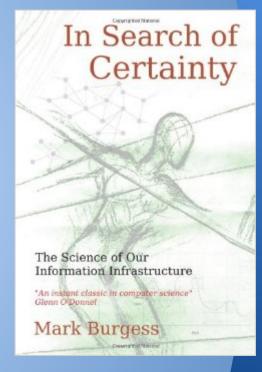
"Cloudstream"

Cloudstream https://github.com/simontuffs/cloudstream/wiki Cloudstream Stack:

- Netflix OSS, Open/CPU, iPython, Cloudsim, Amazon/Kinetics Netflix/Suro Storm/Spark
 Real-Time Analytics, in the Cloud, for the Cloud.
 - Currently building an application simulator
 - Design & train analytics

Questions?

Recommendation: Mark Burgess • In Search Of Certainty, 2013 • Views information systems from a physics perspective, showing the non-deterministic complexity we are creating, and how hard it is to manage



Caution!

Please seek a second opinion before spending years building a Ph.D. out of the following speculations & observations....

A Posteriori Observations Focus on \$ not KWh for allocation • (they are isomporphic) \$ drive customer behavior the right direction Consider standardizing on "Model Predictive Controls" (e.g. GPC) • Superset all other linear methods, save time :) Most of my challenges do not close any control loops other than estimation/modeling loops

A Posteriori Challenges

Monitoring Validation

- Our Cloud is down! Our Monitoring is down!
- How can you tell?

Avoid WOM (write-only monitoring)

 how to aggregate useful data without losing information but still do analytics

Causality

- Infer dependency graph from data?
- Cross-covariance for causation.

A Posteriori Challenges

- Develop Cloud invariants/assertions as "models of behavior"
 - increased latency => upstream errors
 - upstream errors => downstream request drop
 - increased cpu => increased latency
 - increased requests => increased (cpu, load)
 - parameterize & tune a behavioral model base on these invariants.

A Posteriori Challenges Machine learning (SVM, markov models) Behavioral classification Failure identification Evidence based learning Bayesian networks for fault detection. **Better predictors** • Wavelets, basis functions. Modeling the Cloud Dynamic Equilibrium **Transient Dynamics** 0 "Kalman" Filtering

A Posteriori Challenges

- Auto-tune configuration parameters (close the loop)
 - 99.5% latency ⇔ errors => need to increase caller timeouts.
 - 99.5% latency ⇔ load => need to scale up if at the "knee".
 - 99.5% queue size ~ max-size => need to add worker threads
 - do this in production, across operating ranges

Thankyou!