
Cloud Control Systems -
Real-Time Analytics

Dr. Simon Tuffs
Cloudstream

http://tinyurl.com/qfyuyn2

http://tinyurl.com/qfyuyn2
http://tinyurl.com/qfyuyn2

Background
● University of Oxford

○ Self Tuning Control Systems/GPC
● 25 years software industry: highlights

○ Iridium Ground Station (Motorola)
○ Spacestation Infrastructure (Boeing)
○ Cloud (Netflix)

● Theme: Software at Scale

● Cloud Based Service Applications
○ Analytics & Control, how and why

● Cloud Applications As:
○ Multi-variable time-series systems
○ Amenable to signal processing
○ Resilient to failure using analytics
○ Operational using feedback control

This Talk

Cloud Application Architectures

● Classes
○ Micro-service

■ Massive volume business operations (e.g.
Netflix)

○ Big-Data
■ Terabytes of data, captured from streams into

persistent stores.
■ Sparse compute intensive operations

Cloud: Application Architectures

● Cloud Application composed of services
● Services have dependencies (graph)
● Requests flow from the edge down
● Reponses flow back to edge
● Latencies accumulate forwards
● Errors propagate backwards
● Services are developed independently

Cloud: Application Architectures

Cloud: Application Architectures
Services & Dependencies:

Cloud Service

1

2

3

edge
4

5

6

7

8

9

10

11

12

dep-1 dep-2

13

14

15

16

dep-3

requests

responses

Client
Devices

6

9

12

13

14

16

dependencies services

● But it isn’t that simple
● A real dependency graph…
● “Death Star Architecture”

Cloud: Application Architectures

services

dependencies

Adrian Cockcroft: Monitorama 2014

“We are
not alone”

● Complex beyond human comprehension
● Nonlinear
● Time-varying
● Partially predictable
● Potentially chaotic
● The worst kind of “system”

Cloud: Application Architectures

Analytics are not optional,
they are essential

● Operational
○ Availability, fault detection, repair,

peformance optimization
● Business Intelligence

○ how much money are we making?
○ how many customers did we just lose?
○ how can we make more money?

Cloud Applications: Analytics
Classes

● To analyze you must monitor
● How do you handle billions of events?
● How do you transform them for

analytics?

Cloud Applications: Monitoring

● Instrument services:
○ to expose internal details (e.g. type of

errors, versus HTTP 503’s)
● With significant request volume:

○ monitored events become statistically
driven time-series

○ signal processing methods then apply

Cloud Applications: Monitoring

● From Events To Time Series:

Cloud: Monitoring

AAA AA AAAAAA AAA AAAAAAA AAA
AAAA

BB BB BB BB BB BB BB BB BB BB BB BB BB
BB

Events (Logs)

1

A

B

A

B

Time Series
(#Events/Period)

time

period

● Convert events to time-series (coordinate
transform)
○ bucket by period
○ classify & tag
○ store for query/retrieval

● Reduces dimension of data by many orders
of magnitude
○ -> Real Time Analytics become feasible

Cloud: Monitoring Architecture

● Events -> Logs -> Timeseries
Cloud: Monitoring Architecture

“A”: {
 “name”: “licence-request”,
 “type”: “latency”,
 “value”: “12”
}

“A”: {
 “name”: “licence-request”,
 “type”: “latency”,
 “value”: “12”
}

“A”: {
 “name”: “licence-request”,
 “type”: “latency”,
 “value”: “12”
}

“A”: {
 “name”: “licence-request”,
 “type”: “latency”,
 “value”: “12”
}

“A”: {
 “name”: “licence-request”,
 “type”: “latency”,
 “value”: “12”
}

“A”: {
 “name”: “licence-request”,
 “type”: “latency”,
 “value”: “10”
}

raw events

“A”: {
 “name”: “licence-request”,
 “type”: “latency”,
 “value”: “6”
}

“A”: {
 “name”: “licence-request”,
 “type”: “latency”,
 “combine”: “average”
 “value”: “8”
 “period”: “60”,
 “time”: 138349838,
 “node”: “i-a12434c0”,
 “service”: “1”,
 “region”: “us-east-1.prod”
}

log records

on-instance monitoring system

pe
rio

d

time series
values

tags

● “Assume that any metrics not being
analyzed will turn out to be garbage”
○ Adrian Cockcroft, Architect Netflix Cloud

● Instrument to measure:
○ health (success, failure)
○ performance (load, cpu)
○ availability (timeouts, fallbacks)
○ resources (disk i/o, memory, handles),
○ sla’s (latency)

What to Monitor?

Visualization as an Analytic

● Classify metrics by type
● View services as rows of service:metrics
● Patterns start to emerge between

visually.
● This scales to 100’s of services and

metrics (make the graphs small, human
visual cortex sees patterns)

Service Metric Visualization

Cloud: Visualizing
● service:metric

metric:
service:

succes
s

failure latency memor
y

cpu tcp...

1

2

3

time

va
lu

e

are these related?

analytics can answer these questions

Beyond Visualization:
Computational Analytics

Anomaly Detection & Diagnosis

● Look at a service:metric
● Is it behaving normally, or is it showing

signs of distress?
● How can we automate this?
● Without lots of configuration?
● In a scale invariant way?
● Use a mean-shift analytic...

Anomaly Detection

● mean? variance?
Analytics for Anomalies?

t.test(ratio)
=>
ANOMALY!

running mean

latest
mean

servie:metric

time

● You found an anomalous service:metric,
now what?

● Correlate against *all other* service
metrics

● This is fast (<0.1s for 400sm in R)

Analytics for Anomalies?

Correlate
● Pearson + mean removal

metric:
service:

succes
s

failure latency memor
y

cpu tcp...

1

2

3

correlated, but are they causal?... more service:metrics

Filter
● Increase signal-to-noise:

metric:
service:

succes
s

failure latency memor
y

cpu tcp...

1

2

3

correlated, causal?... more service:metrics

● Correlation x Dependency = Probable
Cause

Can we do more?

Anomaly -> Correlation -> Cause

Cloud Service

1

2

3

edge
4

5

6

7

8

9

10

11

12

dep-1 dep-2

13

14

15

16

dep-3

requests

responses

Client
Devices 2

7 12

156

9

1

3

4

5

8

10

11

13

14

16

correlate

anomaly correlate

Classify and Decide.
● Prune with dependency tree

service:

 metric:

failure

latency

cpu

2

7

15

anomaly vector:
{
 2:failure:1.0,
 3:latency:-0.7,
 3:cpu:0.6
}

(use for classification in
later events)

(use your domain
knowledge to infer root
cause)

the most important
analytic tool

*
*

correlations

● Persist this pattern for future causal
analysis

● Did we see this anomaly vector before?

Build a model

Canary Analysis (deployment)

● For a given service:
○ Deploy new code to limited #instances
○ Analyze against existing production code
○ Decide whether good or bad
○ Push forward (upgrade all service instances)

■ or roll back.

Canary Analysis Defined

To Avoid This...

responses

Cloud Service

edge

dep-1 dep-2 dep-3

requests

responses

Client
Devices
Client

Devices

outage

Cloud Service

edge

dep-1 dep-2 dep-3

requests

responses

Client
Devices

Canary Analysis: How? instances

● How does this work?
○ Service metric grid (again), 2 rows.
○ Compare canary to baseline, statistical

tests.

Canary Analysis

Automated Canary Analysis

metric:
service:

succes
s

failure latency memor
y

cpu tcp...

baseline

canary

HOT

Autoscaling

● increase #instances when load increases
● decrease #instances when load decreases
● works well...

Load Based Autoscaling

● During an outage, load drops
● Instances are terminated
● Service becomes underprovisioned for

return to normal request rate
● Overload occurs
● Other services suffer.
● Chaos.

Except when it doesn’t..

Reactive Autoscaling

Autoscaler

load

reactive

work-rate

service

overloadoutage

recovery

downscale

● Use feedforward control
● Base on prediction of request rate
● Simple application of FFT low-pass filter.

How do you avoid this?

● FFT based prediction

Scryer

FFT prediction

● Predictive+Reactive = Feedback Control

Netflix: Scryer

Autoscaler

load

reactive

work-rate

capacity
planner

min

predictor

service

no
overload

Real Time Analytics Engine

● How do you do analytics at scale?
○ Do monitoring at scale
○ Do data-collection & buffering at scale
○ Run Analytics at scale
○ Use the Cloud to achieve scale.

● (But use a different Cloud).

Analytics at Scale

● One possible architecture: Java and R
engines in the Cloud
○ gathering data
○ running analytics
○ performing visualization
○ doing notification

Analytics at Scale

Cloud Analytics: Interactive

buffer

get

metrics

Java

analyze
R

visualize

autoscaled
clusters

run

configure

Cloud Analytics: Automated

buffer

get

metrics

Java

analyze
R

autoscaled
clusters

schedule

configure

decide

act!

Analytics Challenges

● instance outlier detection at scale
● tuning queues & timeouts for services
● detection of overload/underprovision
● anomaly detection (prediction)
● behavior pattern classification
● automatic alert tuning
● “closing the loop”

Cloud Analytics: Big Challenges

“Cloudstream”

 https://github.com/simontuffs/cloudstream/wiki

● Cloudstream Stack:
○ Netflix OSS, Open/CPU, iPython, Cloudsim,

Amazon/Kinetics Netflix/Suro Storm/Spark
● Real-Time Analytics, in the Cloud, for

the Cloud.
○ Currently building an application simulator
○ Design & train analytics

Cloudstream

https://github.com/simontuffs/cloudstream/wiki

Questions?

● Mark Burgess
○ In Search Of Certainty, 2013
○ Views information systems

from a physics perspective,
showing the non-deterministic
complexity we are creating,
and how hard it is to manage

Recommendation:

● Please seek a second opinion before
spending years building a Ph.D. out of
the following speculations &
observations….

Caution!

● Focus on $ not KWh for allocation
○ (they are isomporphic)
○ $ drive customer behavior the right direction

● Consider standardizing on “Model
Predictive Controls” (e.g. GPC)
○ Superset all other linear methods, save time

:)
● Most of my challenges do not close any

control loops
○ other than estimation/modeling loops

A Posteriori Observations

● Monitoring Validation
○ Our Cloud is down! Our Monitoring is down!
○ How can you tell?

● Avoid WOM (write-only monitoring)
○ how to aggregate useful data without losing

information but still do analytics
● Causality

○ Infer dependency graph from data?
○ Cross-covariance for causation.

A Posteriori Challenges

● Develop Cloud invariants/assertions as
“models of behavior”
○ increased latency => upstream errors
○ upstream errors => downstream request

drop
○ increased cpu => increased latency
○ increased requests => increased (cpu, load)
○ parameterize & tune a behavioral model

base on these invariants.

A Posteriori Challenges

● Machine learning (SVM, markov models)
○ Behavioral classification
○ Failure identification

● Evidence based learning
○ Bayesian networks for fault detection.

● Better predictors
○ Wavelets, basis functions.

● Modeling the Cloud
○ Dynamic Equilibrium
○ Transient Dynamics
○ “Kalman” Filtering

A Posteriori Challenges

● Auto-tune configuration parameters
(close the loop)
○ 99.5% latency ⇔ errors => need to increase

caller timeouts.
○ 99.5% latency ⇔ load => need to scale up if

at the “knee”.
○ 99.5% queue size ~ max-size => need to add

worker threads
○ do this in production, across operating

ranges

A Posteriori Challenges

Thankyou!

