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Background
● University of Oxford

○ Self Tuning Control Systems/GPC
● 25 years software industry: highlights

○ Iridium Ground Station (Motorola)
○ Spacestation Infrastructure (Boeing)
○ Cloud (Netflix)

● Theme: Software at Scale 



● Cloud Based Service Applications
○ Analytics & Control, how and why

● Cloud Applications As:
○ Multi-variable time-series systems
○ Amenable to signal processing 
○ Resilient to failure using analytics
○ Operational using feedback control

This Talk



Cloud Application Architectures



● Classes
○ Micro-service

■ Massive volume business operations (e.g. 
Netflix)

○ Big-Data 
■ Terabytes of data, captured from streams into 

persistent stores.
■ Sparse compute intensive operations

Cloud: Application Architectures



● Cloud Application composed of services
● Services have dependencies (graph)
● Requests flow from the edge down
● Reponses flow back to edge
● Latencies accumulate forwards
● Errors propagate backwards
● Services are developed independently

Cloud: Application Architectures



Cloud: Application Architectures
Services & Dependencies:

Cloud Service
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● But it isn’t that simple
● A real dependency graph…
● “Death Star Architecture”

Cloud: Application Architectures

services

dependencies



Adrian Cockcroft: Monitorama 2014

“We are
not alone”



● Complex beyond human comprehension
● Nonlinear
● Time-varying
● Partially predictable
● Potentially chaotic
● The worst kind of “system”

Cloud: Application Architectures



Analytics are not optional,
they are essential



● Operational
○ Availability, fault detection, repair, 

peformance optimization
● Business Intelligence

○ how much money are we making?
○ how many customers did we just lose?
○ how can we make more money?

Cloud Applications: Analytics 
Classes



● To analyze you must monitor
● How do you handle billions of events?
● How do you transform them for 

analytics?

Cloud Applications: Monitoring



● Instrument services:
○ to expose internal details (e.g. type of 

errors, versus HTTP 503’s)
● With significant request volume:

○ monitored events become statistically 
driven time-series 

○ signal processing methods then apply

Cloud Applications: Monitoring



● From Events To Time Series:

Cloud: Monitoring
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● Convert events to time-series (coordinate 
transform)
○ bucket by period
○ classify & tag 
○ store for query/retrieval

● Reduces dimension of data by many orders 
of magnitude
○  -> Real Time Analytics become feasible

Cloud: Monitoring Architecture



● Events -> Logs -> Timeseries
Cloud: Monitoring Architecture
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● “Assume that any metrics not being 
analyzed will turn out to be garbage”
○ Adrian Cockcroft, Architect Netflix Cloud

● Instrument to measure:
○ health (success, failure)
○ performance (load, cpu)
○ availability (timeouts, fallbacks)
○ resources (disk i/o, memory, handles), 
○ sla’s (latency)

What to Monitor?



Visualization as an Analytic



● Classify metrics by type
● View services as rows of service:metrics
● Patterns start to emerge between 

visually.
● This scales to 100’s of services and 

metrics (make the graphs small, human 
visual cortex sees patterns)

Service Metric Visualization



Cloud: Visualizing
● service:metric
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Beyond Visualization: 
Computational Analytics



Anomaly Detection & Diagnosis



● Look at a service:metric
● Is it behaving normally, or is it showing 

signs of distress?
● How can we automate this?
● Without lots of configuration?
● In a scale invariant way?
● Use a mean-shift analytic...

Anomaly Detection



● mean? variance?
Analytics for Anomalies?

t.test(ratio)
=> 
ANOMALY!

running mean

latest 
mean

servie:metric

time



● You found an anomalous service:metric, 
now what?

● Correlate against *all other* service 
metrics

● This is fast (<0.1s for 400sm in R)

Analytics for Anomalies?



Correlate
● Pearson + mean removal
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Filter
● Increase signal-to-noise:

      
metric: 
service:
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● Correlation x Dependency = Probable 
Cause

Can we do more?



Anomaly -> Correlation -> Cause

Cloud Service
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Classify and Decide.
● Prune with dependency tree

      
service:

 metric:

failure

latency

cpu

2

7

15

anomaly vector: 
{
  2:failure:1.0,   
  3:latency:-0.7, 
  3:cpu:0.6
}
 

(use for classification in 
later events)

(use your domain 
knowledge to infer root 
cause)

the most important 
analytic tool

*
*

correlations



● Persist this pattern for future causal 
analysis 

● Did we see this anomaly vector before?

Build a model



Canary Analysis (deployment)



● For a given service:
○ Deploy new code to limited #instances
○ Analyze against existing production code
○ Decide whether good or bad
○ Push forward (upgrade all service instances)

■ or roll back.

Canary Analysis Defined



To Avoid This...

responses
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Canary Analysis: How? instances



● How does this work?
○ Service metric grid (again), 2 rows.
○ Compare canary to baseline, statistical 

tests.

Canary Analysis



Automated Canary Analysis
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Autoscaling 



● increase #instances when load increases
● decrease #instances when load decreases
● works well...

Load Based Autoscaling



● During an outage, load drops
● Instances are terminated
● Service becomes underprovisioned for 

return to normal request rate
● Overload occurs
● Other services suffer.
● Chaos.

Except when it doesn’t..



Reactive Autoscaling
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● Use feedforward control
● Base on prediction of request rate
● Simple application of FFT low-pass filter.

How do you avoid this?



● FFT based prediction

Scryer

FFT prediction



● Predictive+Reactive = Feedback Control

Netflix: Scryer

Autoscaler
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Real Time Analytics Engine



● How do you do analytics at scale?
○ Do monitoring at scale
○ Do data-collection & buffering at scale
○ Run Analytics at scale
○ Use the Cloud to achieve scale.

● (But use a different Cloud).

Analytics at Scale



● One possible architecture: Java and R 
engines in the Cloud
○ gathering data
○ running analytics
○ performing visualization
○ doing notification

Analytics at Scale



Cloud Analytics: Interactive
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Cloud Analytics: Automated
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Analytics Challenges



● instance outlier detection at scale
● tuning queues & timeouts for services
● detection of overload/underprovision
● anomaly detection (prediction)
● behavior pattern classification
● automatic alert tuning
● “closing the loop”

Cloud Analytics: Big Challenges



“Cloudstream”



    https://github.com/simontuffs/cloudstream/wiki

● Cloudstream Stack:
○ Netflix OSS, Open/CPU, iPython, Cloudsim, 

Amazon/Kinetics Netflix/Suro Storm/Spark
● Real-Time Analytics, in the Cloud, for 

the Cloud. 
○ Currently building an application simulator
○ Design & train analytics

Cloudstream 

https://github.com/simontuffs/cloudstream/wiki


Questions?



● Mark Burgess
○ In Search Of Certainty, 2013
○ Views information systems 

from a physics perspective, 
showing the non-deterministic 
complexity we are creating, 
and how hard it is to manage 

Recommendation:



● Please seek a second opinion before 
spending years building a Ph.D. out of 
the following speculations & 
observations….

Caution!



● Focus on $ not KWh for allocation 
○ (they are isomporphic)
○ $ drive customer behavior the right direction

● Consider standardizing on “Model 
Predictive Controls” (e.g. GPC) 
○ Superset all other linear methods, save time 

:)
● Most of my challenges do not close any 

control loops 
○ other than estimation/modeling loops

A Posteriori Observations



● Monitoring Validation 
○ Our Cloud is down! Our Monitoring is down!
○ How can you tell? 

● Avoid WOM (write-only monitoring)
○ how to aggregate useful data without losing 

information but still do analytics
● Causality

○ Infer dependency graph from data? 
○ Cross-covariance for causation.

A Posteriori Challenges



● Develop Cloud invariants/assertions as 
“models of behavior”
○ increased latency => upstream errors
○ upstream errors => downstream request 

drop
○ increased cpu => increased latency
○ increased requests => increased (cpu, load)
○ parameterize & tune a behavioral model 

base on these invariants.

A Posteriori Challenges



● Machine learning (SVM, markov models)
○ Behavioral classification
○ Failure identification

● Evidence based learning
○ Bayesian networks for fault detection.

● Better predictors
○ Wavelets, basis functions.

● Modeling the Cloud
○ Dynamic Equilibrium
○ Transient Dynamics
○ “Kalman” Filtering

A Posteriori Challenges



● Auto-tune configuration parameters  
(close the loop)
○ 99.5% latency ⇔  errors => need to increase 

caller timeouts.
○ 99.5% latency ⇔  load => need to scale up if 

at the “knee”. 
○ 99.5% queue size ~ max-size => need to add 

worker threads 
○ do this in production, across operating 

ranges

A Posteriori Challenges



Thankyou!


