

Exploring Autonomics for Federated Clouds

Moustafa AbdelBaky, Javier Diaz-Montes, Mengsong Zou and Manish Parashar

The NSF Cloud and Autonomic Computing Center Rutgers, The State University of New Jersey, USA http://cometcloud.org

In collaboration with Omer Rana, Tom Beach, Ioan Petri, Cardiff University, UK

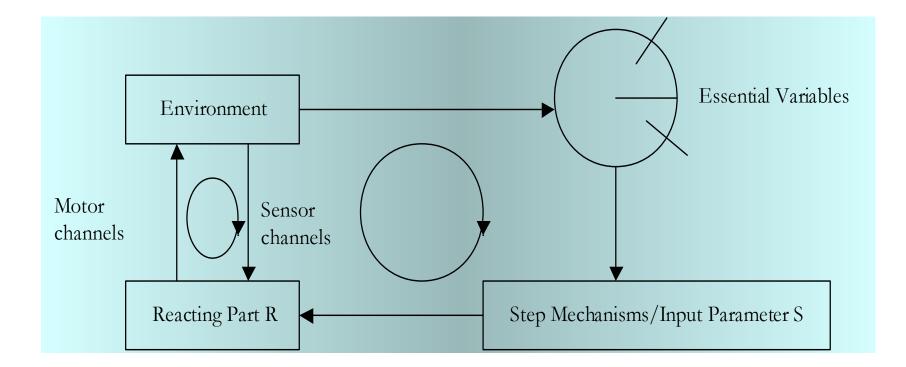
Moving towards the Cloud

- Cloud services provide an attractive platform for supporting the computational and data needs of academic and business application workflows
- Cloud paradigm:
 - Rent resources as cloud services on-demand and pay for what you use
 - Potential for scaling-up, scaling-down and scaling-out, as well as for IT outsourcing and automation
- Hybrid cloud services landscape spanning private clouds, public clouds, HEC centers, etc.
 - Heterogeneous offering with different QoS, pricing models, availability, capabilities, and capacities

Cloud Federations – Motivations

- Application workflow exhibit heterogeneous and dynamic workloads, and highly dynamic demands for resources
 - Various and dynamic QoS requirements
 - Throughput, budget, time
 - Often involve large amounts of data
 - Large size, heterogeneous nature, and geographic location
- Such workloads are hard to be efficiently supported using classic federation models
- Implications of the cloud paradigm
 - Rent required resources as cloud services on-demand and pay for what you use
 - Heterogeneous offering with different QoS and costs
- Provisioning and federating an appropriate mix of resources on-the-fly is essential and non-trivial

AUTONOMICS FOR CLOUD FEDERATIONS


Integrating Biology and Information Technology: The Autonomic Computing Metaphor (~2004)

- Current paradigms, mechanisms, management tools are inadequate to handle the scale, complexity, dynamism and heterogeneity of emerging systems and applications
- Nature has evolved to cope with scale, complexity, heterogeneity, dynamism and unpredictability, lack of guarantees
 - self configuring, self adapting, self optimizing, self healing, self protecting, highly decentralized, heterogeneous architectures that work !!!
- Goal of autonomic computing is to enable self-managing systems/ applications that addresses these challenges using high level guidance
 - Separation of policy and mechanisms; Holistic; Automation

"Autonomic Computing: An Overview," M. Parashar, and S. Hariri, Hot Topics, Lecture Notes in Computer Science, Springer Verlag, Vol. 3566, pp. 247-259, 2005.

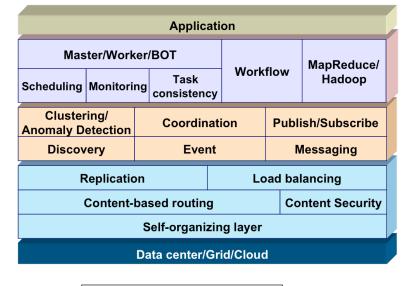
Ashby's Ultrastable System (1920s)

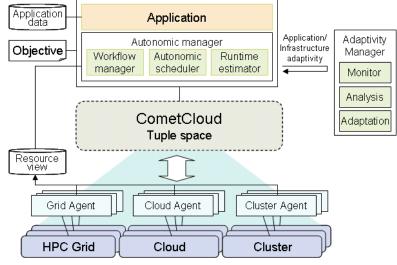
Integrating Biology and Information Technology: The Autonomic Computing Metaphor (~2004)

- Rich body of work on using autonomics for cloud/datacenter management
 - Provisioning
 - Workload management
 - Power/energy management
 - Etc...

- Using control theoretic approaches

"Autonomic Computing: An Overview," M. Parashar, and S. Hariri, Hot Topics, Lecture Notes in Computer Science, Springer Verlag, Vol. 3566, pp. 247-259, 2005.


Autonomic Cloud/ACI Federation


- Assemble a federated cloud/ACI on-the-fly integrating clouds, grids and HPC
 - Cloud-bursting: dynamic application scale-out/up to address dynamic workloads, spikes in demand, and other extreme requirements
 - Cloud-bridging: on-the-fly integration of different resource classes
- Provide policy-driven autonomic resource provisioning, scheduling and runtime adaptations
 - What and where to provision?
 - Policies encapsulate user's requirements (deadline, budget, etc.), resource constraints (failure, network, availability, etc.)
- Provide programming abstractions to support application workflows

CometCloud – Federated Clouds for Science

- Enable applications on dynamically federated, hybrid infrastructure exposed using Cloud abstractions
 - Services: discovery, associative object store, messaging, coordination
 - Cloud-bursting: dynamic application scale-out/ up to address dynamic workloads, spikes in demand, and extreme requirements
 - Cloud-bridging: on-the-fly integration of different resource classes (public & private clouds, data-centers and HPC Grids)
- High-level programming abstractions & autonomic mechanisms
 - Cross-layer Autonomics: Application layer; Service layer; Infrastructure layer
- Diverse applications
 - Business intelligence, financial analytics, oil reservoir simulations, medical informatics, document management, etc.

http://cometcloud.org

Federated (hybrid) computing infrastructure

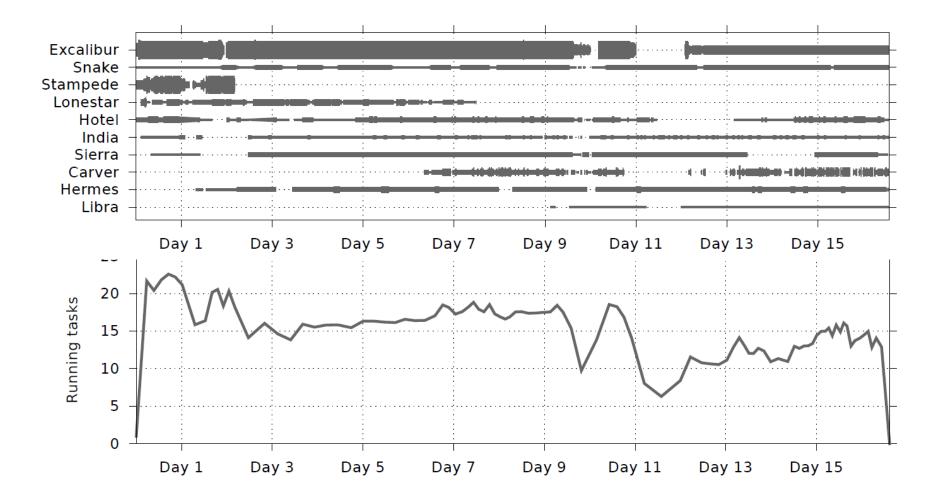
On-Demand Elastic Federation using CometCloud

- Software defined ACI federations exposed using elastic on-demand Cloud abstractions
- Autonomic cross-layer federation management using user and provider policies and constraints
 - Separately defined; dynamically evolving
 - Specified based on availability, cost/ performance constraints, etc.
 - Assimilated (or removed) dynamically
 - Sites discover/coordinate with each others to:
 - Identify themselves / Verify identity (x. 509, public/private key,...)
 - Advertise their own resources capabilities, availabilities, constraints
 - Discover available resources

Exec2 Site 1 Exec1 Site 2 Federation Management Agent Space exec3 Site 3 ŝ Site 4 Agent Agent exec3 Agent exec1 exec2 Shared Execution Space Shared Execution Space

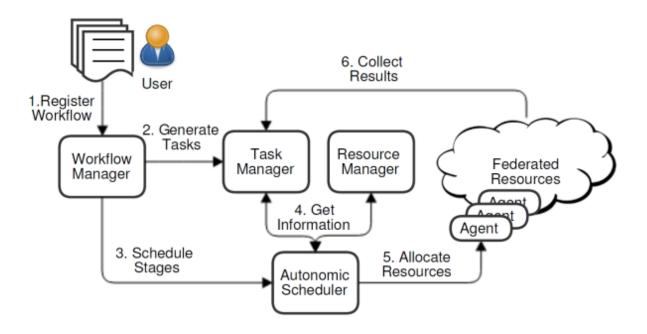
Exec3

• Federated ACI testbed


UberCloud Experiment

- 10 different resources from 3 countries federated using CometCloud
- 16 days, 12 hours, 59 minutes and 28 seconds of continuous execution
- 12,845 tasks processed, 2,897,390 CPU-hours consumed, 400 GB of data generated

Summary of the experiment



DATA-DRIVEN WORKFLOWS [CLOUD'14] (WITH IBM)

Enabling Data-Driven Workflows

- Enable the autonomic execution of complex workflows in software-defined multi-cloud environments
- Elastically compose appropriate cloud services and capabilities to ensure that the user's objectives are met

Optimizing Resource Usage in Multi-Clouds

- Execute a data-driven workflow in a multi-cloud environment
- Different scheduling policies and objectives
 - Minimum Completion Time
 - Centralized storage vs Distributed storage
 - Deadline-based Policy
 - Performance optimization (Proc)
 - Data locality optimization (Data)
 - Performance and data optimization (ProcData)
 - Cost optimization (Cost)

Experiment Setup

- Montage workflow
- Three heterogeneous and geographically distributed clouds

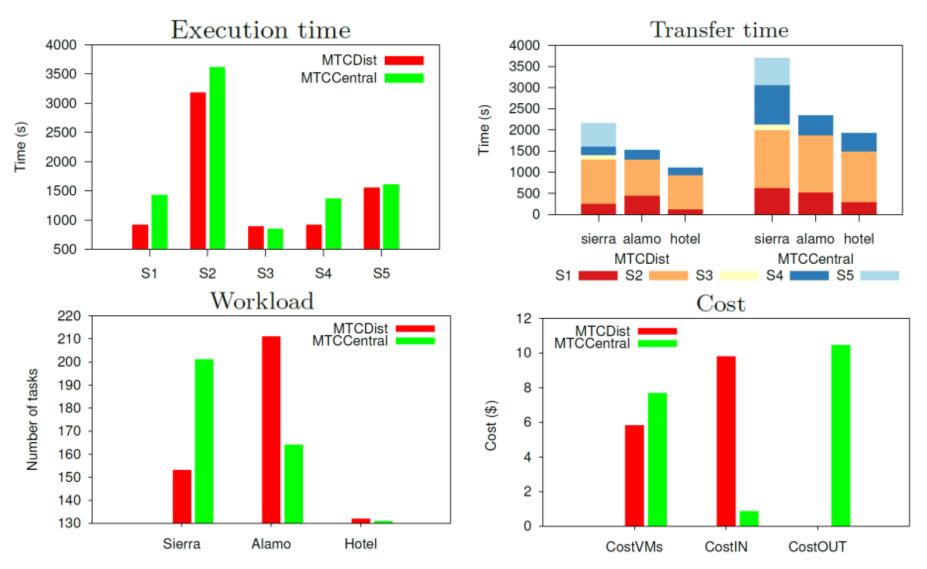
VM type [†]	# Cores	Memory	Max. VMs [‡]	Speedup
Alamo_Large	4	8 GB	2	3.55
Alamo_Medium	2	4 GB	4	2.77
Alamo_Small	1	2 GB	2	1.68
Sierra_Medium	2	4 GB	2	1
Sierra_Small	1	2 GB	3	0.71
Hotel_Small	1	2 GB	6	0.76

Note: † – Name of the site followed by the type of VM. ‡ – Maximum number of available VMs per type

Network (Down/Up)	Alamo	Sierra	Hotel
Alamo Sierra Hotel	- 11/11 18/18	10/0.9 	15/15 11/11 -
Internal Network (Down/Up)	11/2.3	30/30	45/45

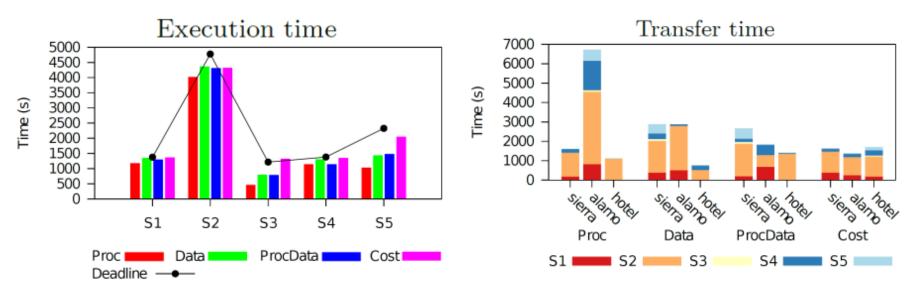
Alamo

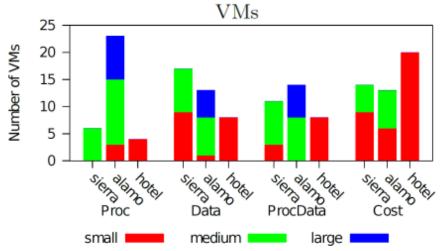
Hotel

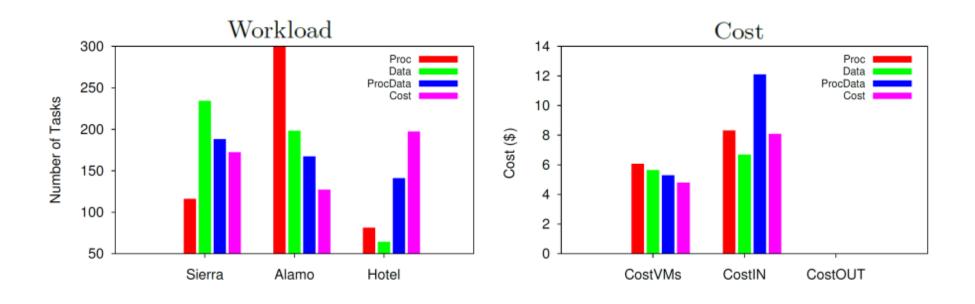

• Sierra – SDSC

Sierra

- Alamo TACC
- Hotel U. Chicago



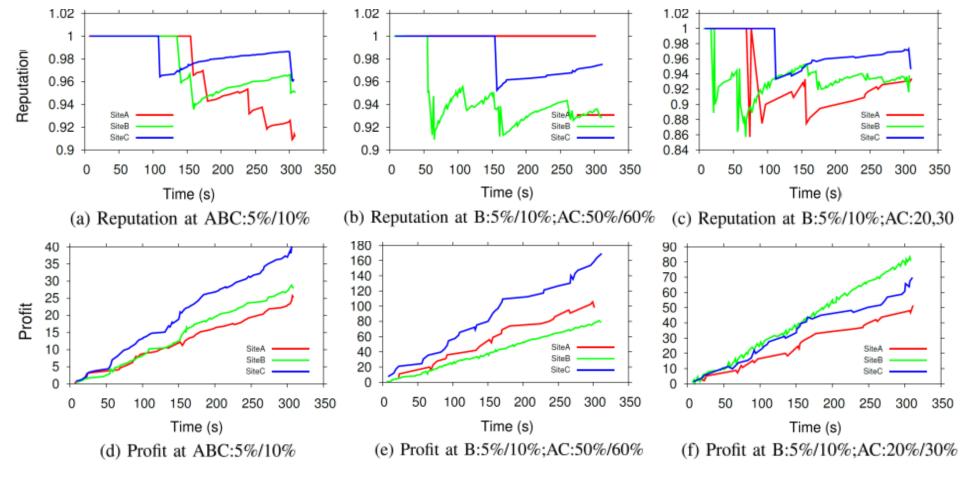

Minimum Completion Time


Deadline-based Policies

Deadline-based Policies (Cont.)

FEDERATING RESOURCES USING SOCIAL MODELS [IC2E'14]

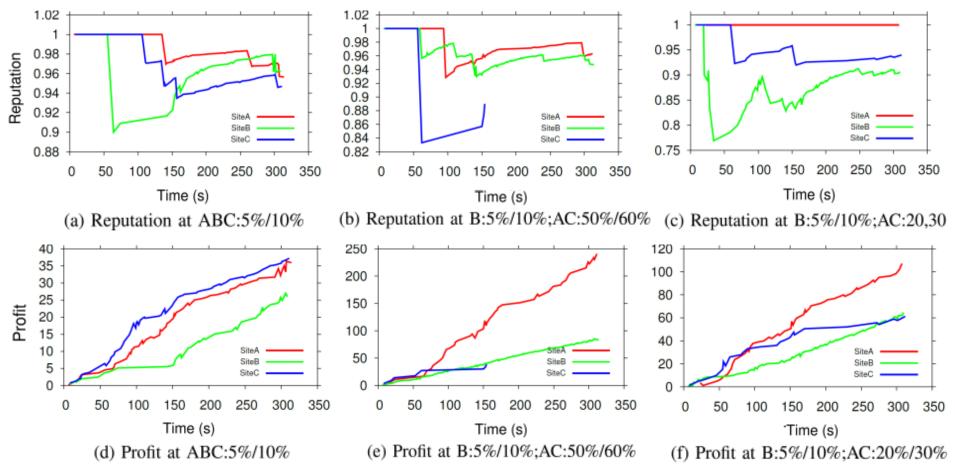
Exchanging Resources in a Federated Cloud


- Consider federation policies and determine their impact on the overall status of each site
- Market model for resource sharing
 - External task vs Local task
 - Heterogeneous tasks different deadlines and costs
 - Each site decides how much benefit per task (% cost)
 - Federation policy = Auction criteria
- Federation infrastructure between Cardiff (UK) and Rutgers (USA)

Profit and Reputation of Each Site

RUTGERS

Auction Criteria based on Price

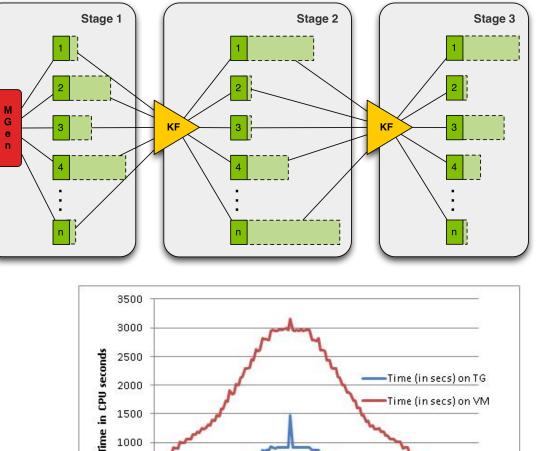

Task/Metric	Cost	TTC	Deadline
Red	10	9	12
Black	8	7	10
Blue	6	5	8

Profit and Reputation of Each Site II

Task/Metric	Cost	TTC	Deadline
Red	10	9	12
Black	8	7	10
Blue	6	5	8

Auction Criteria based on Price and Reputation

HPC PLUS CLOUD FEDERATIONS [E-SCIENCE'10]


Exploring Hybrid HPC-Grid/Cloud Usage Modes (eScience'09, ScienceCloud'10)

What are appropriate usage modes for hybrid infrastructure?

- Acceleration -- How can Clouds be used as accelerators to improve the application time to completion
 - To alleviate the impact of queue wait times
 - "Strategically Off load" appropriate tasks to Cloud resources
 - All while respecting budget constraints.
- Conservation How Clouds can be used to conserve HPC Grid allocations, given appropriate runtime and budget constraints.
- Resilience How Clouds can be used to handle:
 - General: Response to dynamic execution environments
 - Specific: Unanticipated HPC Grid downtime, inadequate allocations or unexpected Queue delays/QoS change

Reservoir Characterization: EnKF-based History Matching

- Black Oil Reservoir • Simulator
 - simulates the movement of oil and gas in subsurface formations
- **Ensemble Kalman Filter**
 - computes the Kalman gain matrix and updates the model parameters of the ensembles
- Heterogeneous workload, dynamic workflow
- Based on Cactus, PETSc •

50

Task ID

2000

1500

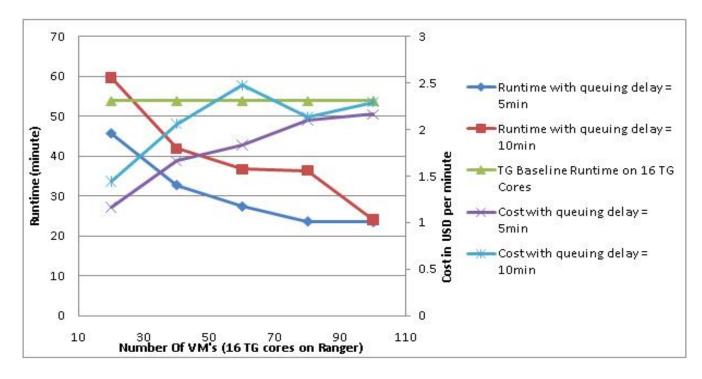
1000

500

Time (in secs) on TG

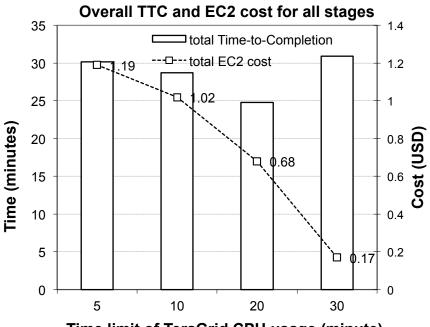
Time (in secs) on VM

150


100

Using Clouds as Accelerators for HPC Grids

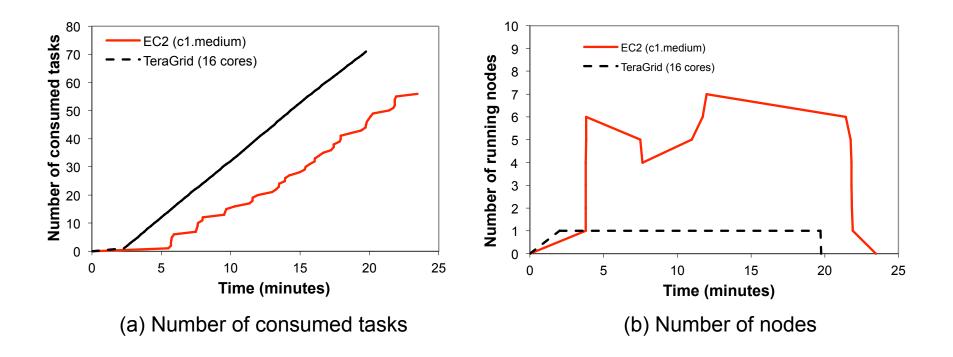
- Explore how Clouds (EC2) can be used as accelerators for HPC Grid (TG) workloads
 - 16 CPUs (Ranger)
 - Average queuing time for Ranger was set to 5 and 10 minutes
 - Number of EC2 VMs (m1.small) from 20 to 100 in steps of 20
 - VM start up time was about 160 seconds


Using Clouds as Accelerators for HPC Grids I

- Acceleration is more notable with more VMs lower the TTC
- The reduction in TTC is roughly linear
 - Affected by complex interplay between the tasks in the workload and resource availability

Exploring Conservation

- Application deadline 33 minutes (time using only TeraGrid)
- What if we have limited resources on TeraGrid? But we need to keep the same deadline
- Use Cloud to save HPC resources



Time limit of TeraGrid CPU usage (minute)

CPU usage limit (min)	5	10	20	30
Num of scheduled VMs (EC2)	7	6	4	1
Num of expected tasks consumed by EC2	111	92	54	14
Consumed tasks by EC2	109	89	49	16

Exploring Resilience

- Deadline 20 minutes
- Two EC2 instances are failed at around 8 minutes

Conclusions

- Complex application workflows necessiciate software defined federated platforms that integrated heterogeneous cloud services
- Provisioning and federating an appropriate mix of resources on-the-fly is essential and non-trivial
- Autonomics can provide the abstractions and mechanism to manage complexity
 - Separation + Integration + Automation
- However, there are implications
 - Added uncertainty
 - Correctness, predictability, repeatability
 - Validation
 - New formulations necessary....

The CometCloud Team

Moustafa AbdelBaky

PhD student, Dept. of Electrical & Computer Engr. Rutgers University Email: <u>moustafa@cac.rutgers.edu</u>

Javier Diaz-Montes, Ph.D.

Assistant Research Professor, Dept. of Electrical & Computer Engr. Rutgers University Email: javidiaz@rdi2.rutgers.edu

PhD Student, Dept. of Computer Science Rutgers University

Mengsong Zou

Email: <u>mz228@cac.rutgers.edu</u>

Manish Parashar, Ph.D. Prof., Dept. of Electrical & Computer Engr. Director, Center for Autonomic Computing Rutgers University Email: parashar@rutgers.edu

And many collaborators....

CometCloud: http://cometcloud.org

