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Games for Synthesis (of Reactive Systems)

= support the design process with automatic synthesis

Env | ? = )

» Sys is constructed by an algorithm

» Sys is correct by construction

» Underlying theory: 2-player zero-sum games
» Env is adversarial (worst-case assumption)

Winning strategy = Correct Sys
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Preliminaries:
2-player Zero-sum Games
on Graphs




2-player Zero-sum Games on Graphs

(Finite) directed graph

Two types of vertices
(Player | and Player 2 vertices)




2-player Zero-sum Games on Graphs

How to play?
One token is placed on initial vertex

Players play for an infinite number of
2 4 rounds:

® in each round: the player that
3 owns the vertex moves the
token to an adjacent vertex

Outcome=infinite path

Thursday 18 April 13



2-player Zero-sum Games on Graphs




2-player Zero-sum Games on Graphs




2-player Zero-sum Games on Graphs

| = 2 — |




2-player Zero-sum Games on Graphs

| = 2= 1 —4




2-player Zero-sum Games on Graphs

| %2> 1> 45




2-player Zero-sum Games on Graphs

3@

| 22— 1 54553




2-player Zero-sum Games on Graphs

| %221 —24—95—93—4




2-player Zero-sum Games on Graphs

| 2221249593945




2-player Zero-sum Games on Graphs

| 222|249 5—93—24>95—24—>




2-player Zero-sum Games on Graphs

Who is winning ?

w Win| C V% : Set of good outcomes (paths) for Player |
= Win,=V®\Win, (zero sum)

Examples of winning conditions:

® Win|={ 11 | T visits Good }
Reachability

® Win ={ 11 | 11 visits Good infinitely often }
Buchi




Strategies




Strategies




Strategies




Strategies

Strategy for Player | =
One choice in each node of Player |
in tree unfolding




Strategies

Ai:V'V|—edge




Strategies

Strategy is winnhing

(for Player 1),

if all branches of the resulting
tree in the winning condition
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Types of strategies

(Player 1) strategy: Memoryless strategy:

)\I,mZVI —'edge.
21|, m=set of memoryless strategies of Player |

Ai:V.V|—edge.
2.1=set of strategies of PI.|

Finite-memory strategy: Randomized strategy:
A1,V Vi —edge but regular (Moore machine) A1, m:V"V|— Dist(edge).
2| =set of finite memory strategies of Player | 2 |, m=set of randomized strategies of Player |

o %d o
0 “
”"‘000’
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Decision Problem

® 3 game graph G
® 3 winning condition Win| CV®

® decide if Player | has a winning strategy

¢ determinacy:
either Player | has a winning for Win,

or Player 2 has a winning strategy for Win,=V®*\Win,
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2-player Zero-sum Games on Graphs

One token is placed on initial vertex

We play an infinite number of
rounds:

2 4 ® in each round: the plawar that
owns the ve

Thursday 18 April 13



Quantitative Objectives:
Mean-Payoff Games




Mean-Payoff Games [EM/9]

defined on
weighted directed graphs




Mean-Payoff Games [EM/9]

O : positions of maximizer=system

: positions of minimizer=environment

Edges are labelled with rewards

(1,4) (4,5) (5,4) ... (4,5) (5,4) ... =p|
4 3 3 -l .. Py

= Lim Supn-+ew Zi=|,i=n ri/ n

= MP((1,4) (4,5) (5,4) ...(4,5) (5,4) ...)=]

Win={ play | MP(play)=c}
Note: hot W-regular.




Mean-Payoff Games [EM/9]

O : positions of maximizer=system

: positions of minimizer=environment

Edges are labelled with rewards

(1,4) (4,5) (5,4) ...(4,5) (54) ... =p|
4 3 3 - ... Py
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Mean-Payoff Games [EM/9]

Lim Sup - Lim Inf do not
define the same set of plays




Mean-payoff Games

Theorem [EM79,jJur98,ZP97,GZ09]

(i) In mean-payoff games, the two players can play optimally with
memoryless strategies

(ii) The winner can be decided in NP(\coNP and in pseudo-
polynomial time

Rem: Those results hold no matter if lim sup/lim inf is used in the
definition and the winner is the same for the two definitions

Thursday 18 April 13



Mean-payoff Games

Theorem [EM79,jJur98,ZP97,GZ09]

(i) In mean-payoff games, the two players can play optimally with
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(ii) The winner can be decided in NP(\coNP and in pseudo-
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Quantitative Objectives:
Multi-dimension Extensions




Multi-dim. Mean-Payoff Games (MMPs)

Multi-dimension objectives (for Player |)

conjunction of one-dimension objectives
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Multi-dim. Mean-Payoff Games (MMPs)

(0,0)
0

~Alternate

O Player |, Maximizer

Player 2, Minimizer

® Player | has a winning strategy.
® Player | may need infinite memory !

® Player |l can play memoryless
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gMPGs - Infinite Memory

To play optimally gMPGs, infinite memory is necessary

(2,0 02)

)
(0,0) '

SOWnG

(0,0)

4+(2, 2) for Lim Sup MP
4+(1,1) is achievable for Lim Inf MP

4None of the two is achievable with finite memory
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gMPGs - Infinite Memory




Results for Extensions

Opt. Stg. Opt. Stg. Complexity
Player | Player 2 Decision

MP Memoryless Memoryless NPncoNP

MMPG - Sup Infinite Memoryless NPncoNP
MULRCERLLL Infinite Memoryless coNP-C
MMPG - Mix Infinite Memoryless coNP-C
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Results for Extensions

Opt. Stg.
Player |

Opt. Stg.
Player 2

MP
MMPG - S Memoryless NPncoNP
MULASERLLL Infinite Memoryless coNP-C
MMPG - Mix Infinite Memoryless coNP-C
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Variations on MP:
Window Objectives




Window Objectives

® Space for new definitions as classical objectives have drawbacks:
complexity of MP is open
(2) MMP is sensitive to lim inf. vs. lim sup.

= Window objectives: ook at the payoff through a local finite
window sliding over the play

® conservative approximations of MP

® ensure good properties within a bounded time horizon

® algorithms and complexity results:
® PTIME-C for | dim.fixed and polynomial window size
e EXPTIME-C for k dim. fixed window size

® ..and more
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Window Obijectives - Definitions

Idea: look at payoffs through a local finite window
— mean should be above zero within window size
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Window Obijectives - Definitions

Idea: look at payoffs through a local finite window
— mean should be above zero within window size
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Formal Definitions




Formal Definitions

Good Window of size n

play p satisfies GW(n) at position 1=>0
iff 3j: 1 <j <i+n s.t. Sum(p(i..j))=>0, . : :
noted p(i..0) = GW(n) 1] 1IN
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Formal Definitions

Good Window of size n

play p satisfies GW(n) at position 1=>0
iff 3j: 1 <j <i+n s.t. Sum(p(i..j))=>0, . : .
noted p(i...0)  GW(m) . 1] 1IN

Window opens at |

successfully closes at j

;
Otherwise, it unsuccessfully closes at i+n
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Formal Definitions

Good Window of size n

play p satisfies GW(n) at position 1=>0
iff 4j: 1 <j <i+n s.t. Sum(p(i..))>0,

noted p(i..0) = GW(n) 1] 1+n
Direct Fixed Window of size n:
DFW(n)
lay p satisfies DFW(n) iff for all 10, p(1..0) = GW(n
play p (n) p(1..00) (n) _ GW(n)
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Formal Definitions

Good Window of size n

play p satisfies GW(n) at position 1=>0
iff 4j: 1 <j <i+n s.t. Sum(p(i..))>0,

noted p(i..0) = GW(n) 1] 1+n

Direct Fixed Window of size n:

DFW(n)
lay p satisfies DFW(n) iff for all 10, p(1..0) = GW(n
play p (n) p(1..0) (n) =O0GW(n)
Fixed Window of size n
play p satisfies FixedW(n) iff FixedW(n)
there exists 10, p(1..0) = DFW(n) =0 GW( Il)
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Formal Definitions
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Formal Definitions

Good Window of size n

play p satisfies GW(n) at position 1=>0
iff 4j: 1 <j <i+n s.t. Sum(p(i..))>0,

noted p(i..o0) E GW(n) 1] 1+n

Direct Fixed Window of size n:
play p satisfies DFW(n) iff for all 1>0, p(1..0) = GW(n) EDP;;“‘;(]I(II)D
Fixed Window of size n
l play p satisfies FixedW(n) iff FixedW(n)
there exists 10, p(1..0) = DFW(n) =0 GW(H)

Bounded Window

play p satisfies BW iff BW

there exists n>1, p = FixedW(n) =In.Fix edW ( Il)
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Examples

= Fixed window is satisfied for size=2

= Direct fixed window is not satisfied for any size !




Examples

Player | wins mean-payoff
... but he looses for every window obijectives




Examples

For n=3: memory needed
For n=4 : no memory needed




Relation with
“classical” objectives




Relation between MP/TP and W.O.

If the answer to one of window mean-payoff problems is YES,

then the answer to the mean-payoff threshold problem for
threshold zero is also YES.
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Relation between MP/TP and W.O.

If the answer to one of window mean-payoff problems is YES,

then the answer to the mean-payoff threshold problem for
threshold zero is also YES.

>0 =0=0 =0 >0 >0
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Relation between MP/TP and W.O.

If there exists € > 0 s.t. the answer to the mean-payolff threshold
problem for threshold € is YES, then the answer to the BW
problem is also YES.
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Relation between MP/TP and W.O.

If there exists € > 0 s.t. the answer to the mean-payolff threshold
problem for threshold € is YES, then the answer to the BW
problem is also YES.

Pl.] can force
E-positive cycles
=

Pl.I can win the DFW/(n) objective
for n large enough
i.e.n=(|S|—1) - (1 +[S| - W)

Proof uses cycle decomposition of outcomes
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Relation between MP/TP and W.O.

1 .If the answer to the one of window mean-payoff problems is YES, then the
answer to the mean-payoff threshold problem for threshold zero is also YES.

2.1If there exists € > 0 s.t. the answer to the mean-payoff threshold problem for
threshold € is YES, then the answer to the BW problem is also YES.

— Window objectives can be seen as

E-approximations of mean-payoff
for large enough windows

Thursday 18 April 13



Solving FixedW (n)
for | dim.




Algorithm for FixedW (n)

|dea:

Follow the structure of definition
+

recurse on subgames




Algorithm for FixedW (n)

1) compute W, ={s|sE=KI)) GW(n) }

i.e. the set of states from which PI. 1 can force a positive sum within n
steps (dynamic programming) O(n.|G|-log(W))
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Algorithm for FixedW (n)

) compute W, ={s|sE=KI)) GW(n) }

i.e. the set of states from which Pl. 1 can force a positive sum within n
steps (dynamic programming) O(n.|G|-log(W))

2) compute W2 ={s | s = (I)»>OW}
i.e. the set of states from which Pl. 1 can win the direct window
objective for size n. Complexity: O(|G|)
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Algorithm for FixedW (n)

) compute W, ={s|sE=KI)) GW(n) }

i.e. the set of states from which Pl. 1 can force a positive sum within n
steps (dynamic programming) O(n.|G|-log(W))

2) compute W2 ={s | s = (I)»>OW}
i.e. the set of states from which Pl. 1 can win the direct window
objective for size n. Complexity: O(|G|)

3) compute W3 ={s | sk (I»O W)
i.e. the attractor of W> is clearly winning for Pl. 1. Complexity: O(|G|)

Those states are winning for Player |

So they should be avoided at all cost by player 2
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Algorithm for FixedW (n)

) compute W, ={s|sE=KI)) GW(n) }

i.e. the set of states from which Pl. 1 can force a positive sum within n
steps (dynamic programming) O(n.|G|-log(W))

2) compute W2 ={s | s = (I)»>OW}
i.e. the set of states from which Pl. 1 can win the direct window
objective for size n. Complexity: O(|G|)

3) compute W3 ={s | sk (I»O W)
i.e. the attractor of W> is clearly winning for Pl. 1. Complexity: O(|G|)

4) Pl.2 should avoid W3 at all cost: recurse on S\W;
The number of recursive calls is bounded by O(|Gl)

Overall complexity: bounded by O(|G]>.n.log(W))
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Solving FixedW ((n)

In two-player one-dimension games:

(a) the fixed arbitrary window mean-payoff problem is decidable
in time polynomial in the size of the game and the window size

(b) the fixed polynomial-size window mean-payoff problem is P-
complete

(c) Both players require memory, and memory of size linear in
the size of the game and the size of the window is sufficient
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Main Results

one-dimension

k-dimension

complexity Py mem. | P, mem. complexity Py mem. | P, mem.
P/MP NP N coNP mem-less coNP-c. /NPNcoNP | infinite mem-less
TP/ TP NP N coNP mem-less undec. (Thm. 1) - -
WMP: fixed PSPACE-h. (Thm. 4
_ x.e P-c. (Thm. 2) mem. req. SPAC (Thm. 4) .
polynomial window < linear(|$| - ) EXP-easy (Thm. 4) exponential
=11 " fmax
MP: fi Thm. 4
WMP: fixed P(|G/, lmax) (Thm. 2) (Thm. 2) EXP-c. (Thm. 4) (Thm. 4)
arbitrary window
WMP: bounded NP coNP (Thm. 3) mem-less infinite NPR-h. (Thm. 5) ) ]
window problem (Thm. 3) (Thm. 3)
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http://arxiv.org/abs/1209.3234
http://arxiv.org/abs/1209.3234

and in

see on arXiv:
http://arxiv.org/abs/1302.4248
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Conclusion

» Quantitative games: energy games (+generalizations by Larsen, Bouyer,...),
mean-payoff games, total-payoff games, ... is an active research area, part of a larger
program...

» From quality to quantity: broad effort in order to lift boolean verification/
synthesis to quantitative verification/synthesis, e.g.:

» quantitative languages (Henzinger et al.) def. by weighted automata
» In this talk, we have shown:
» MP games can be extended to multi-dim.
» Space for alternative objectives: e.g. window objectives
» “approximations’” of MP/TP

» natural definitions and interesting algorithms
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