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Games for Synthesis (of Reactive Systems)

	
  

☞ support the design process with automatic synthesis

? ⊨ ψ

ØSys is constructed by an algorithm
ØSys is correct by construction
ØUnderlying theory: 2-player zero-sum games
ØEnv is adversarial (worst-case assumption)

Winning strategy = Correct Sys 

Env ||
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Preliminaries:
2-player Zero-sum Games 

on Graphs
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2-player Zero-sum Games on Graphs

(Finite) directed graph

Two types of vertices 
(Player 1 and Player 2 vertices)
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How to play ?

One token is placed on initial vertex

Players play for an infinite number of 
rounds:

• in each round: the player that 
owns the vertex moves the 
token to an adjacent vertex

Outcome=infinite path
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2-player Zero-sum Games on Graphs
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2-player Zero-sum Games on Graphs
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Who is winning ? winning conditions

☛ Win1⊆ Vω : Set of good outcomes (paths) for Player 1

☛ Win2=Vω\Win1 (zero sum)

Examples of winning conditions:

• Win1={ π | π visits Good }
Reachability winning condition

• Win1={ π | π visits Good infinitely often }
Büchi winning condition

2-player Zero-sum Games on Graphs
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Strategies

... ...
... ... ...

...

Unfolding of the game graph
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Strategies

... ...
... ... ...

...

... ... ... ... ... ...

Unfolding of the game graph
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Strategies

... ...
...

... ... ... ... ... ...

Strategy for Player 1 =
One choice in each node of Player I
in tree unfolding 
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Strategies

... ...
...

... ... ... ... ... ...

λ1: V*. V1→edge

Strategy for Player 1 =
One choice in each node of Player I
in tree unfolding 
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Strategies

... ...
...

... ... ... ... ... ...

Strategy is winning 
(for Player 1), 
if all branches of the resulting 
tree in the winning condition

λ1: V*. V1→edge

Strategy for Player 1 =
One choice in each node of Player I
in tree unfolding 
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Player 1 -Finite Memory Strategies

Lemma. Finite memory strategies are sufficient for Player 1 to win in gEGs.

Proof. First, remember that (�k,≤) is well-quasi ordered.

Let λ1 be winning

... ...
... ... ...

...

L1

L2

On each branch

With L1≤L2

stop and play 
as from L1 !

Then λ’1 is winning
and finite memory

... ...
... ... ...

...
wqo+Koenig’s lemma

Friday 19 November 2010

Types of strategies
(Player 1) strategy:
λ1: V*. V1→edge. 
Σ1=set of strategies of Pl.1

Finite-memory strategy:
λ1,f: V*. V1→edge but regular (Moore machine)
Σ1,f=set of finite memory strategies of Player I

Memoryless strategy:
λ1,m:V1→edge. 
Σ1,m=set of memoryless strategies of Player1

Randomized strategy:
λ1,m: V*. V1→Dist(edge). 
Σ1,m=set of randomized strategies of Player1

MPGs and EGs
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3c=6

Maximizer ensure value 1 in MPG iff Maximizer win EG G-1.
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Decision Problem
Given:

• a game graph G

• a winning condition Win1⊆Vω

• decide if Player 1 has a winning strategy

• determinacy: 
either Player 1 has a winning for Win1 
or Player 2 has a winning strategy for Win2=Vω\Win1 
It is true for a large class of objectives, 
e.g. ω-regular objectives 
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One token is placed on initial vertex

We play an infinite number of 
rounds:

• in each round: the player that 
owns the vertex moves the 
token to adjacent vertex

Outcome=infinite path

1

3

42

5

2-player Zero-sum Games on Graphs

Classical model for the synthesis of reactive systems:

Player 1=system and Player II=environment

For embedded systems, we need quantities !
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Quantitative Objectives:
Mean-Payoff Games
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Mean-Payoff Games [EM79]

2 defined on 
weighted directed graphs
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: positions of maximizer=system

: positions of minimizer=environment

Edges are labelled with rewards

2

5

Mean-Payoff Games [EM79]

=play

2

Win={ play | MP(play)≥c}
Note: not ω-regular.

(1,4) (4,5) (5,4) ... (4,5) (5,4) ....
   4      3     -1        3     -1   ....  

= Lim Supn→+∞ Σi=1,i=n ri / n

= MP((1,4) (4,5) (5,4) ... (4,5) (5,4) ....)=1
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Mean-Payoff Games [EM79]

2

Win={ play | MP(play)≥c}
Note: not ω-regular.

Lim Sup - Lim Inf do not 
define the same set of plays
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Mean-payoff Games

Theorem [EM79,Jur98,ZP97,GZ09]

(i) In mean-payoff games, the two players can play optimally with 
memoryless strategies

(ii) The winner can be decided in NP∩coNP and in pseudo-
polynomial time

Rem: Those results hold no matter if lim sup/lim inf is used in the 
definition and the winner is the same for the two definitions
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Mean-payoff Games

Theorem [EM79,Jur98,ZP97,GZ09]

(i) In mean-payoff games, the two players can play optimally with 
memoryless strategies

(ii) The winner can be decided in NP∩coNP and in pseudo-
polynomial time

Rem: Those results hold no matter if lim sup/lim inf is used in the 
definition and the winner is the same for the two definitions

Open question: are MP gam
es 

solvable in PTime ?
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Quantitative Objectives:
Multi-dimension Extensions
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Multi-dim. Mean-Payoff Games (MMPs)

Player 1, Maximizer

Player 2, Minimizer

? ∃λ1 s. t. Outcome(q0,λ1) ⊨ MPinf. ≥ (0,0)

Multi-dimension objectives (for Player 1) 
= 

conjunction of one-dimension objectives
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• Player 1 has a winning strategy.

• Player 1 may need infinite memory !

• Player II can play memoryless

Player 1, Maximizer

Player 2, Minimizer

? ∃λ1 s. t. Outcome(q0,λ1) ⊨ MPinf. ≥ (0,0)

Alternate

Multi-dim. Mean-Payoff Games (MMPs)

Thursday 18 April 13



gMPGs - Infinite Memory
To play optimally gMPGs, infinite memory is necessary

✦(2, 2) for Lim Sup MP

✦(1,1) is achievable for Lim Inf MP

✦None of the two is achievable with finite memory
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gMPGs - Infinite Memory

Thursday 18 April 13



Results for Extensions

Opt. Stg.
Player 1

Opt. Stg.
Player 2

Complexity
Decision

MP Memoryless Memoryless NP∩coNP

MMPG - Sup Infinite Memoryless NP∩coNP

MMPG - Inf Infinite Memoryless coNP-C

MMPG - Mix Infinite Memoryless coNP-C
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Results for Extensions

Opt. Stg.
Player 1

Opt. Stg.
Player 2

Complexity
Decision

MP Memoryless Memoryless NP∩coNP

MMPG - Sup Infinite Memoryless NP∩coNP

MMPG - Inf Infinite Memoryless coNP-C

MMPG - Mix Infinite Memoryless coNP-C

ε-optimality 
acheivable with finite memory st

rategies
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Variations on MP:
Window Objectives
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Window Objectives

• Space for new definitions as classical objectives have drawbacks: 
1 complexity of MP is open 
2 MMP is sensitive to lim inf. vs. lim sup.

➡ Window objectives: look at the payoff through a local finite 
window sliding over the play

• conservative approximations of MP

• ensure good properties within a bounded time horizon

• algorithms and complexity results:

• PTIME-C for 1 dim. fixed and polynomial window size

• EXPTIME-C for k dim. fixed window size

• ... and more
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Window Objectives - Definitions

Idea: look at payoffs through a local finite window
⟹ mean should be above zero within window size
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size=n

Idea: look at payoffs through a local finite window
⟹ mean should be above zero within window size

Window Objectives - Definitions

Sum

Time
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Idea: look at payoffs through a local finite window
⟹ mean should be above zero within window size

size=n

Window Objectives - Definitions

Sum

Time

Thursday 18 April 13



Formal Definitions
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Formal Definitions
Good Window of size n

play ρ satisfies GW(n) at position i≥0 
iff ∃j: i ≤ j ≤ i+n s.t. Sum(ρ(i..j))≥0,

noted ρ(i..∞) ⊨ GW(n) i j i+n
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Formal Definitions
Good Window of size n

play ρ satisfies GW(n) at position i≥0 
iff ∃j: i ≤ j ≤ i+n s.t. Sum(ρ(i..j))≥0,

noted ρ(i..∞) ⊨ GW(n) i j i+n

Window opens at i

successfully closes at j

Otherwise, it unsuccessfully closes at i+n
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Formal Definitions
Good Window of size n

play ρ satisfies GW(n) at position i≥0 
iff ∃j: i ≤ j ≤ i+n s.t. Sum(ρ(i..j))≥0,

noted ρ(i..∞) ⊨ GW(n) 

Direct Fixed Window of size n:

play ρ satisfies DFW(n) iff for all i≥0, ρ(i..∞) ⊨ GW(n)

i j i+n

DFW(n)
≡☐GW(n)
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Formal Definitions
Good Window of size n

play ρ satisfies GW(n) at position i≥0 
iff ∃j: i ≤ j ≤ i+n s.t. Sum(ρ(i..j))≥0,

noted ρ(i..∞) ⊨ GW(n) 

Direct Fixed Window of size n:

play ρ satisfies DFW(n) iff for all i≥0, ρ(i..∞) ⊨ GW(n)

Fixed Window of size n 

play ρ satisfies FixedW(n) iff 
there exists i≥0, ρ(i..∞) ⊨ DFW(n)

Bounded Window 

play ρ satisfies BW iff 
there exists n≥1, ρ ⊨ FixedW(n)

i j i+n

DFW(n)
≡☐GW(n)

FixedW(n)
≡♢☐GW(n)

BW
≡∃n•FixedW(n)
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Examples

– Given lmax 2 N0, the direct fixed window mean-payoff objective

DirFixWMPG(v, lmax) =
n

p | 8 j � 0, p( j,•) 2 GWG(v, lmax)
o

(2)

requires that good windows bounded by lmax exist in all positions along the play.
– The direct bounded window mean-payoff objective

DirBndWMPG(v) =
n

p | 9 lmax > 0, p 2DirFixWMPG(v, lmax)
o

(3)

asks that there exists a bound lmax s.t. the play satisfies the direct fixed objective.
– Given lmax 2 N0, the fixed window mean-payoff objective

FixWMPG(v, lmax) =
n

p | 9 i � 0, p(i,•) 2DirFixWMPG(v, lmax)
o

(4)

is the prefix-independent version of the direct fixed window objective: it asks for the existence of a
suffix of the play satisfying it.

– The bounded window mean-payoff objective

BndWMPG(v) =
n

p | 9 lmax > 0, p 2 FixWMPG(v, lmax)
o

(5)

is the prefix-independent version of the direct bounded window objective.

For any v 2Qk and lmax 2 N0, the following inclusions are true:

DirFixWMPG(v, lmax)✓ FixWMPG(v, lmax)✓ BndWMPG(v), (6)
DirFixWMPG(v, lmax)✓DirBndWMPG(v)✓ BndWMPG(v). (7)

Similarly to classical objectives, all objectives can be equivalently expressed for threshold {0}k by mod-
ifying the weight function. Hence, given any variant of the objective, the associated decision problem is
to decide the existence of a winning strategy for P1 for threshold {0}k. Lastly, for complexity purposes,
we make a difference between polynomial (in the size of the game) and arbitrary (i.e., non-polynomial)
window sizes.

Notice that all those objectives define Borel sets. Hence they are determined by Martin’s theorem [22].
Let p = s0s1s2 . . . be a play. Fix any dimension t,1 t  k. The window from position j to j0, 0 j < j0,

is closed iff there exists j00, j < j00  j0 s.t. the sum of weights on dimension t over the sequence s j . . .s j00 is
non-negative. Otherwise the window is open. Given a position j0 in p , a window is still open in j0 iff there
exists a position 0  j < j0 s.t. the window from j to j0 is open. Consider any edge (si,si+1) appearing
along p . If the edge is non-negative the window starting in i immediately closes. If not, a window opens
that must be closed within lmax steps. Consider the first position i0 s.t. this window closes, then we have that
all intermediary opened windows also get closed by i0, that is, for any i00, i < i00  i0, the window starting
in i00 is closed before or when reaching position i0. Indeed, the sum of weights over the window from i00 to
i0 is strictly greater than the sum over the window from i to i0, which is non-negative. We define this fact as
the inductive property of windows.

s1 s2 s3 s4
1 �1

�1

1

Fig. 4: Fixed window is satisfied for lmax � 2, whereas
even direct bounded window is not.

s1 s2 0

�1

1

Fig. 5: Mean-payoff is satisfied but all vari-
ants of window are not.

Illustration. Consider the game depicted on Fig. 4. It has a unique outcome, and it is winning for the
classical mean-payoff objective of threshold 0, as well as for the infimum (resp. supremum) total-payoff
objective of threshold �1 (resp. 0). Consider the fixed window mean-payoff objective for threshold 0. If

➡ Fixed window is satisfied for size≥2

➡ Direct fixed window is not satisfied for any size !
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Player 1 wins mean-payoff 
... but he looses for every window objectives
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Examples

+1

-2

0 +2

-5+4

For n=3: memory needed
For n=4 : no memory needed
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Relation with 
“classical” objectives
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Relation between MP/TP and W.O.

If the answer to one of window mean-payoff problems is YES, 
then the answer to the mean-payoff threshold problem for 
threshold zero is also YES.
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...

≥0 ≥0≥0 ≥0 ≥0 ≥0

Relation between MP/TP and W.O.

If the answer to one of window mean-payoff problems is YES, 
then the answer to the mean-payoff threshold problem for 
threshold zero is also YES.
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If there exists ε > 0 s.t. the answer to the mean-payoff threshold 
problem for threshold ε is YES, then the answer to the BW 
problem is also YES.

Relation between MP/TP and W.O.

Thursday 18 April 13



Pl.1 can force 
ε-positive cycles

⇒

Pl.1 can win the DFW(n) objective 
for n large enough

i.e. n=(|S|−1)· (1+|S|· W)

Proof uses cycle decomposition of outcomes

Relation between MP/TP and W.O.

If there exists ε > 0 s.t. the answer to the mean-payoff threshold 
problem for threshold ε is YES, then the answer to the BW 
problem is also YES.
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Theorem 

1. If the answer to the one of window mean-payoff problems is YES, then the 
answer to the mean-payoff threshold problem for threshold zero is also YES.
 

2. If there exists ε > 0 s.t. the answer to the mean-payoff threshold problem for 
threshold ε is YES, then the answer to the BW problem is also YES. 

⟹ Window objectives can be seen as 
ε-approximations of mean-payoff 

for large enough windows

Relation between MP/TP and W.O.
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Solving FixedW(n) 
for 1 dim.
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Algorithm for FixedW(n)

Idea:

Follow the structure of definition
+

recurse on subgames
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Algorithm for FixedW(n)
1) compute W1 = { s | s ⊨⟨⟨1⟩⟩ GW(n) }
i.e. the set of states from which Pl. 1 can force a positive sum within n 
steps (dynamic programming) O(n•|G|•log(W))
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i.e. the set of states from which Pl. 1 can force a positive sum within n 
steps (dynamic programming) O(n•|G|•log(W))

2) compute W2 = { s | s ⊨ ⟨⟨1⟩⟩☐W1}     winning for DFW(n)
i.e. the set of states from which Pl. 1 can win the direct window 
objective for size n. Complexity: O(|G|)
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Algorithm for FixedW(n)
1) compute W1 = { s | s ⊨⟨⟨1⟩⟩ GW(n) }
i.e. the set of states from which Pl. 1 can force a positive sum within n 
steps (dynamic programming) O(n•|G|•log(W))

2) compute W2 = { s | s ⊨ ⟨⟨1⟩⟩☐W1}
i.e. the set of states from which Pl. 1 can win the direct window 
objective for size n. Complexity: O(|G|)

3) compute W3 = { s | s ⊨ ⟨⟨1⟩⟩♢ W2 }     winning for FixedW(n)

i.e. the attractor of W2 is clearly winning for Pl. 1. Complexity: O(|G|)

Those states are winning for Player 1

So they should be avoided at all cost by player 2
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Algorithm for FixedW(n)
1) compute W1 = { s | s ⊨⟨⟨1⟩⟩ GW(n) }
i.e. the set of states from which Pl. 1 can force a positive sum within n 
steps (dynamic programming) O(n•|G|•log(W))

2) compute W2 = { s | s ⊨ ⟨⟨1⟩⟩☐W1}
i.e. the set of states from which Pl. 1 can win the direct window 
objective for size n. Complexity: O(|G|)

3) compute W3 = { s | s ⊨ ⟨⟨1⟩⟩♢ W2 }

i.e. the attractor of W2 is clearly winning for Pl. 1. Complexity: O(|G|)

4) Pl.2 should avoid W3 at all cost: recurse on S\W3

The number of recursive calls is bounded by O(|G|)

Overall complexity: bounded by O(|G|3•n•log(W)) 
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Solving FixedW(n)
Theorem 

In two-player one-dimension games:

(a) the fixed arbitrary window mean-payoff problem is decidable 
in time polynomial in the size of the game and the window size 

(b) the fixed polynomial-size window mean-payoff problem is P-
complete 

(c) Both players require memory, and memory of size linear in 
the size of the game and the size of the window is sufficient

Thursday 18 April 13



Main Resultsthe play rather than from some point on), i.e., winning for the bounded window mean-payoff objective im-
plies winning for the mean-payoff objective. In the fixed window mean-payoff objective the window length
is fixed and given as a parameter. Observe that winning for the fixed window objective implies winning for
the bounded window objective.

one-dimension k-dimension
complexity P1 mem. P2 mem. complexity P1 mem. P2 mem.

MP / MP NP\ coNP mem-less coNP-c. / NP\ coNP infinite mem-less
TP / TP NP\ coNP mem-less undec. (Thm. 1) - -

WMP: fixed P-c. (Thm. 2) mem. req.
 linear(|S| · lmax)

(Thm. 2)

PSPACE-h. (Thm. 4)
polynomial window EXP-easy (Thm. 4) exponential

WMP: fixed P(|G|, lmax) (Thm. 2) EXP-c. (Thm. 4)
(Thm. 4)

arbitrary window
WMP: bounded NP\ coNP (Thm. 3)

mem-less infinite NPR-h. (Thm. 5) - -
window problem (Thm. 3) (Thm. 3)

Table 1: Complexity of deciding the winner and memory required. New results in bold.

Our contributions. The main contributions of this work (along with the undecidability of multi-dimensional
total-payoff games) are as follows:

1. Single dimension. For the single dimensional case we present an algorithm for the fixed window prob-
lem that is polynomial in the size of the game graph times the size of the fixed window. Thus if the
window size is polynomial, we have a polynomial time algorithm. For the bounded window problem
we show that the decision problem is in NP \ coNP, and at least as hard as solving mean-payoff games.
However, winning for mean-payoff games does not imply winning for bounded window mean-payoff
objective, i.e., the winning sets for mean-payoff games and bounded window mean-payoff games do
not coincide. Moreover, the structure of winning strategies is also very different, e.g., in mean-payoff
games both players have memoryless winning strategies, but in bounded window mean-payoff games
we show that player 2 requires infinite memory. We also show that if player 1 wins the bounded win-
dow mean-payoff objective, then a window of size (|S|� 1) · (|S| ·W + 1) is sufficient where S is the
state space, and W is the largest absolute weight value. Finally, we show that (i) a winning strategy for
the bounded window mean-payoff objective ensures that the mean-payoff value is at least 0 regardless
of the strategy of the opponent, and (ii) a strategy that ensures that the mean-payoff value is strictly
greater than 0 is winning for the bounded window mean-payoff objective.

2. Multiple dimensions. For multiple dimensions, we show that the fixed window problem is EXPTIME-
complete (both for arbitrary dimensions with weights in {�1,0,1} and for two dimensions with ar-
bitrary weights); and if the window size is polynomial, then the problem is PSPACE-hard. For the
bounded window problem we show that the problem is non-primitive recursive hard (i.e., there is no
primitive recursive algorithm to decide the problem).

3. Memory requirements. For all the problems for which we prove decidability we also characterize the
memory required by winning strategies.

The relevant results are summarized in Table 1: our results are in bold fonts. In summary, the fixed
window problem provides an attractive approximation of the mean-payoff and total-payoff games that we
show have much better algorithmic complexity. In contrast to the long-standing open problem of mean-
payoff games, the one-dimension fixed window problem with polynomial window size can be solved in
polynomial time; and in contrast to the undecidability of multi-dimensional total-payoff games, the multi-
dimension fixed window problem is EXPTIME-complete.
Related works. Mean-payoff games have been first studied by Ehrenfeucht and Mycielski in [8] where
it is shown that memoryless winning strategies exist for both players. This result entails that the decision
problem lies in NP \ coNP [18,28], and it was later shown to belong to UP \ coUP [16]. Despite many
efforts [14,28,24,20,15], no polynomial-time algorithm for the mean-payoff games problem is known so far.
Gurvich, Karzanov, Khachivan and Lebedev [14,18] provided the first (exponential) algorithm for mean-
payoff games, later extended by Pisaruk [24]. The first pseudo-polynomial time algorithm for mean-payoff
games was given in [28] and was improved in [2]. The best deterministic exponential algorithm for mean-
payoff games is due to Lifshits and Pavlov [20], who provide a graph decomposition procedure. Bjorklund
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The Complexity of Multi-Mean-Payoff and Multi-Energy

Games!,!!Yaron Velner1, Krishnendu Chatterjee2, Laurent Doyen3, Thomas A. Henzinger2, Alexander

Rabinovich1, and Jean-François Raskin4

1
The Blavatnik School of Computer Science, Tel Aviv University, Israel

2
IST Austria (Institute of Science and Technology Austria)

3
LSV, ENS Cachan & CNRS, France

4
Département d’Informatique, Université Libre de Bruxelles (U.L.B.)

Abstract. In mean-payoff games, the objective of the protagonist is to ensure that the limit average

of an infinite sequence of numeric weights is nonnegative. In energy games, the objective is to ensure

that the running sum of weights is always nonnegative. Multi-mean-payoff and multi-energy games

replace individual weights by tuples, and the limit average (resp. running sum) of each coordinate must

be (resp. remain) nonnegative. These games have applications in the synthesis of resource-bounded

processes with multiple resources.

We prove the finite-memory determinacy of multi-energy games and show the inter-reducibility of multi-

mean-payoff and multi-energy games for finite-memory strategies. We also improve the computational

complexity for solving both classes of games with finite-memory strategies: while the previously best

known upper bound was EXPSPACE, and no lower bound was known, we give an optimal coNP-

complete bound. For memoryless strategies, we show that the problem of deciding the existence of a

winning strategy for the protagonist is NP-complete. Finally we present the first solution of multi-mean-

payoff games with infinite-memory strategies. We show that multi-mean-payoff games with mean-payoff-

sup objectives can be decided in NP ∩ coNP, whereas multi-mean-payoff games with mean-payoff-inf

objectives are coNP-complete.
Keywords: Games on graphs; mean-payoff objectives; energy objectives; multi-dimensional objec-

tives.

1 Introduction
Graph games and multi-objectives. Two-player games on graphs are central in many applications of

computer science. For example, in the synthesis problem, implementations of reactive systems are

obtained from winning strategies in games with a qualitative objective formalized by an ω-regular

specification [22, 21, 1]. In these applications, the games have a qualitative (boolean) objective that

determines which player wins. On the other hand, games with quantitative objective which are

natural models in economics (where players have to optimize a real-valued payoff) have also been

studied in the context of automated design [23, 9, 24]. In the recent past, there has been considerable

interest in the design of reactive systems that work in resource-constrained environments (such as

!
Preliminary versions appeared in the Proceedings of the IARCS Annual Conference on Foundations of Software

Technology and Theoretical Computer Science (FSTTCS), Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik,

LIPIcs, 2010, pp. 505-516, and in the Proceedings of the 14th International Conference on Foundations of Software

Science and Computational Structures (FoSSaCS), Lecture Notes in Computer Science 6604, Springer, 2011, pp.

275-289.!!
Corresponding author: Laurent Doyen; address: LSV - ENS Cachan, 61 av. du President Wilson, 94235 Cachan

Cedex, France; email: doyen@lsv.ens-cachan.fr.

More details in
 http://arxiv.org/abs/1209.3234
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Looking at Mean-Payoff and Total-Payoff through Windows

Krishnendu Chatterjee1,? , Laurent Doyen2 , Mickael Randour3,† , and Jean-François Raskin4,‡

1 IST Austria (Institute of Science and Technology Austria)

2 LSV - ENS Cachan, France

3 Computer Science Department, Université de Mons (UMONS), Belgium

4 Département d’Informatique, Université Libre de Bruxelles (U.L.B.), Belgium

Abstract. We consider two-player games played on weighted directed graphs with mean-payoff and

total-payoff objectives, which are two classical quantitative objectives. While for single dimensional

objectives all results for mean-payoff and total-payoff coincide, we show that in contrast to multi-

dimensional mean-payoff games that are known to be coNP-complete, multi-dimensional total-pay-

off games are undecidable. We introduce conservative approximations of these objectives, where the

payoff is considered over a local finite window sliding along a play, instead of the whole play. For

single dimension, we show that (i) if the window size is polynomial, then the problem can be solved

in polynomial time, and (ii) the existence of a bounded window can be decided in NP \ coNP, and is

at least as hard as solving mean-payoff games. For multiple dimensions, we show that (i) the problem

with fixed window size is EXPTIME-complete, and (ii) there is no primitive-recursive algorithm to

decide the existence of a bounded window.

1 Introduction

Mean-payoff and total-payoff games. Two-player mean-payoff and total-payoff games are played on

finite weighted directed graphs (in which every edge has an integer weight) with two types of vertices: in

player-1 vertices, player 1 chooses the successor vertex from the set of outgoing edges; in player-2 vertices,

player 2 does likewise. The game results in an infinite path (called a play) through the graph. The mean-

payoff (resp. total-payoff) value of a play is the long-run average (resp. sum) of the edge-weights along the

path.

Decision problems. The decision problem for mean-payoff and total-payoff games asks, given a starting

vertex, whether player 1 has a strategy that against all strategies of the opponent ensures a play with value at

least 0. Both for mean-payoff and total-payoff games, memoryless winning strategies exist for both players

(where a memoryless strategy is independent of the past and depends only on the current state) [8,13].

This ensures that the decision problems belong to NP \ coNP; and they belong to the intriguing class of

problems that are in NP \ coNP but whether they are in PTIME are long-standing open questions. The study

of mean-payoff games has also been extended to multiple dimensions where the problem is shown to be

coNP-complete [27,4]. While for one dimension all the results for mean-payoff and total-payoff coincide,

our first contribution shows that quite unexpectedly (in contrast to multi-dimensional mean-payoff games)

the multi-dimensional total-payoff games are undecidable.

Window objectives. On one hand, the complexity of single dimensional mean-payoff and total-payoff

games are long-standing open problems, and on the other hand, the multi-dimensional problem is undecid-

able for total-payoff games. In this work, we propose to study variants of these objectives, namely, bounded

window mean-payoff and fixed window mean-payoff objectives. In a bounded window mean-payoff objec-

tive instead of the long-run average along the whole play we consider payoffs over a local bounded window

sliding along a play, and the objective is that the average weight must be at least zero over every bounded

window from some point on. This objective can be seen as a strengthening of the mean-payoff objective

(resp. of the total-payoff objective if we require that the window objective is satisfied from the beginning of

? Author supported by Austrian Science Fund (FWF) Grant No P 23499-N23, FWF NFN Grant No S11407 (RiSE),

ERC Start Grant (279307: Graph Games), Microsoft faculty fellowship.

† Author supported by F.R.S.-FNRS. fellowship.

‡ Author supported by ERC Starting Grant (279499: inVEST).

see on arXiv:
http://arxiv.org/abs/1302.4248
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‣ Quantitative games: energy games (+generalizations by Larsen, Bouyer,...), 
mean-payoff games, total-payoff games, ... is an active research area, part of a larger 
program...

‣ From quality to quantity: broad effort in order to lift boolean verification/
synthesis to quantitative verification/synthesis, e.g.:

‣ quantitative languages (Henzinger et al.) def. by weighted automata

‣ In this talk, we have shown:

‣ MP games can be extended to multi-dim.

‣ Space for alternative objectives: e.g. window objectives

‣ “approximations” of MP/TP

‣ natural definitions and interesting algorithms

Conclusion
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