
On Under-Determined Dynamical Systems

Oded Maler

CNRS - VERIMAG
Grenoble, France

EMSOFT 2011



The ABC of Model Based Design

I To build complex systems other than by trial and error you
need models

I Regardless of the language or tool used to build a model, at
the end there is some kind of dynamical system

I A mathematical entity that generates behaviors which are
progression of states and events in time

I Sometimes you can reason about such systems analytically

I But typically you simulate the model on the computer and
generate behaviors

I If the model is related to reality you will learn something from
the simulation about the actual behavior of the system which
is, after all, the goal



The Message of this Talk

I Under-determined dynamical systems: systems where not all
the details have been filled out

I Systems that need additional information in order to produce
a simulation trace

I This information is taken from some uncertainty space (or
ignorance space)

I We make distinction between static (punctual) and dynamic
under-determination

I Simulation, testing, formal verification, monte-carlo,
parameter-space exploration are all different ways to take this
uncertainty into account



Outline

I Dynamical systems: continuous, discrete, hybrid and timed

I Static under-determination: initial states and parameters

I Sensitivity-based exploration of parameter space

I Dynamic under-determination: ongoing influence of the
external environment (external = outside the model)

I Handling dynamic under-determination: test coverage and
reachability computation for continuous systems

I Two slides on timed systems



Dynamical Systems in General

I The following abstract features of dynamical systems are
common to both continuous and discrete systems:

I State variables whose set of valuations determine the state
space

I A time domain along which these values evolve

I A dynamic law which says how state variables evolve over
time, possibly under the influence of external factors

I System behaviors are progressions of states in time

I Having such a model, knowing an initial state x [0] one can
predict, to some extent, the value of x [t]



Classical Dynamical Systems

I State variables: real numbers (location, velocity, energy,
voltage, concentration)

I Time domain: the real time axis R or a discretization of it

I Dynamic law: differential equations

ẋ = f (x , u)

or their discrete-time approximations

x [t + 1] = f (x [t], u[t])

I Behaviors: trajectories in the continuous state space

I What you would construct using tools like Matlab Simulink,
Modelica, etc.



Discrete-Event Dynamical Systems (Automata)

I An abstract discrete state space, state variables need not
have a numerical meaning

I A logical time domain defined by the events (order but not
metric)

I Dynamics defined by transition rules: input event a takes the
system from state s to state s′

I Behaviors are sequences of states and/or events

I Composition of large systems from small ones using:
different modes of interaction: synchronous/asynchronous,
state-based/event-based

I What you will build using tools like Raphsody or Stateflow (or
even C programs or digital HDL)



Timed and Hybrid Systems

I Mixing discrete and continuous dynamics

I Hybrid automata: automata with a different continuous
dynamics in each state

I Transitions = mode switchings (valves, thermostats, gears)

I Timed systems: an intermediate level of abstraction

I Timed Behaviors = discrete events embedded in metric time,
Boolean signals, Gantt charts

I Used implicitly by everybody doing real-time, scheduling,
embedded, planning in professional and real life

I Formally: timed automata (automata with clock variables)



Dynamical Models

I A dynamical system model generates behaviors (runs,
trajectories, executions ...)

I A trace:
x [0], x [1], x [2], . . .

I What does a simulator need to produce such a trace?

I For deterministic systems the dynamic rule is a function
f : X → X

I The rule allows the simulator to proceed from one state to
another

x [i + 1] = f (x [i ])

I You just have to fix the initial state x [0]



Static/Punctual Under-Determination

I Some systems may have a unique initial state (reboot)

I Otherwise, to produce a trace you need to fix x [0]

I Without this information, the system is under-determined
and cannot generate a trace

I It has an empty slot that needs to be filled by some point in
x ∈ X0 ⊆ Rn, the set of all possible initial states

I Hence we call it punctual under-determination



Reminder: Models and Reality

I Whenever our models are supposed to represent something
non-trivial they are just approximations

I This is evident for anybody working in modeling concrete
physical systems

I It is less so for those working on the functionality of digital
hardware or software

I There you have strong deterministic abstractions (logical
gates, program instructions)

I A common way to pack our ignorance in a compact way is to
introduce parameters ranging in some parameter space



Examples:

I Biochemical reactions in cells following the mass action law

I Many parameters related to the affinity between molecules

I Cannot be deduced from first principles, only measured by
isolated experiments under different conditions

I Voltage level modeling and simulation of circuits

I A lot of variability in transistor characteristics depending on
production batch, place in the chip, temperature, etc.

I Timing performance analysis of a new application (task
graph) on a new multi-core architecture

I Precise execution times of tasks are not known before the
application is written and the architecture is built



Parameterize Dynamical Systems

I The dynamics f becomes a template with some empty slots
to be filled by parameter values

I Taken from some parameter space P ⊆ Rm

I Each p instantiates f into a concrete function fp that can be
used to produce traces

I Parameters like initial states are instances of punctual
under-determination: you choose them only once when
starting the simulation

I In fact, you can add the parameters as static state variables,
replacing (X , f ) by (X ′, f ′):

X ′ = X × P f ′(x , p) = (fp(x), p)

I As if at time zero the system decides which dynamics to follow



So What?

I So you have a model which is under-determined, or
equivalently an infinite number of models

I For simulation you need to determine, to make a choice to
pick a point p in the parameter space

I The simulation shows you something about one possible
behavior of the system, or a behavior of one possible system

I But another choice of parameter values could have produced a
completely different behavior

I Ho do you live with that?



Possible Attitudes

I The answer depends on many factors

I One is the responsibility of the modeler/simulator

I What are the consequences of not taking under-determination
seriously

I Is there a penalty for jumping into conclusions based on one
or few simulations?

I Another factor is the mathematical and real natures of the
system you are dealing with

I And as usual, it may depend on culture, background and
tradition in the industrial or academic community



Non Responsibility: a Caricature

I Suppose you are a scientist not engineer, say biologist

I You conduct experiments and observe traces

I You propose a model and tune the parameters until you
obtain a trace similar to the one observed experimentally

I These are nominal values of the parameters

I Then you can publish a paper about your model

I Except for picky reviewers there are no real consequences for
neglecting under-determination

I The situation is different if some engineering is involved
(pharmacokinetics, synthetic biology)

I Or if you want others to compose their models with yours



Justified Nominal Value

I You can get away with using a nominal value if your system is
very continuous and well-behaving

I Points in the neighborhood of p generate similar traces

I There are also mathematical techniques (bifurcation diagrams,
etc.) that can tell you sometimes what happens when you
change parameters

I This smoothness is easily broken by mode switching

I Another justification for ignoring parameter variability:

I When the system is adaptive anyway to deviations from
nominal behavior (control, feedback)



Taking Under-Determination More Seriously: Sampling

I One can sample the parameter space with or without
probabilistic assumptions

I Make a grid in the parameter space (exponential in the
number of parameters)

I Or pick parameter values at random according to some
distribution

I In the sequel I illustrate a technique (due to A. Donze) for
adaptive search in the parameter space

I Sensitivity information from the numerical simulator tells you
where to refine the coverage

I Arbitrary dimensionality of the state space, but no miracles
against the dimensionality of the parameter space



Sensitivity-based Exploration I

I We want to prove all trajectories from X0 do not reach a bad
set of states

I Take x0 ∈ X0 and build a ball B0 around it that covers X0

X0

I Simulate from x0 and generate a sequence of balls B0,B1, . . .

I Bi contains all points reachable from B0 in i steps



Sensitivity-based Exploration II

I After k steps, three things may happen:

I 1. No ball intersects bad set and the system is safe
(over-approximation)

I 2. The concrete trajectory intersects the bad set and the
system is unsafe

I 3. Ball Bk intersects the bad set but we do not know if it is a
real or spurious behavior



Sensitivity-based Exploration III

I In the latter case we refine the coverage and repeat the
process for two smaller balls

x2x1

I Can prove correctness using a finite number of simulations,
focusing on the interesting values

I Can approximate the boundary between parameter values that
yield some qualitative behaviors and values that do not



The Breach Toolboox

I Parameter-space exploration for arbitrary continuous
dynamical systems relative to quantitative temporal
properties

I Applied to embedded control systems, analog circuits,
biochemical reactions

I Available for download



Dynamic Under-Determination

I The system is modeled as open, exposed to external
disturbances

I Dynamics of the form

x [i + 1] = f (x [i ], v [i ])

I The natural way to represent the influence of other
unmodeled subsystems and the external environment

I Under-determination becomes dynamic: to produce a trace
you need to give the value of v at every step in time, a
signal/sequence v [1], . . . , v [k]

I A priory a much larger space to sample from: dimension mk
compared to m for static

I One can use a nominal value: constant, step, periodic signal,
random noise, etc.



Taking Under-Determination More Seriously: Sampling

I A method due to T. Dang:

I Use ideas from robotic motion planning (RRT) to generate
inputs that yield a good coverage of the reachable state space

I Applied to analog circuits



Taking Under-Determination More Seriously: Verification

I Paranoid worst-case formal verification attitude:

I If we say something about the system it should be provably
true for all choices of p, x [0] and v [1], . . . , v [k]

I Instead of doing a simple simulation you do set-based
simulation, computing tubes of trajectories covering
everything

I Breadt-first rather than depth-first exploration
x0

I Advantages: works also for hybrid (switched) systems

I Limitations: manipulates geometric objects in high dimension



State of the Art

I Linear and piecewise-linear dynamics ∼ 200 variables using
algorithms of C. Le Guernic and A. Girard

I The technique is explained in the proceedings article

I Nonlinear dynamics with 10− 20 variables - an ongoing
research activity

I Implemented into the SpaceEx tool developed under the
direction of G. Frehse

I Available on http://spaceex.imag.fr with web interface,
model editor, visualization and more

I Waiting for more beta testers

http://spaceex.imag.fr


The State-Space Explorer (SpaceEx)



Timed Dynamical Systems

I Processes that take some time to conclude after having
started:

I Propagation delay between send and receive
I Execution time of a program
I Duration of a step in a manufacturing process

I Mathematically they are simple timed automata:

x := 0
φ(x)
end

start

p p p

I A waiting state p; a start transition which resets a clock x to
measure time elapsed in active state p

I An end transition guarded by a temporal condition φ(x)

I Condition φ can be x = d (deterministic) or x ∈ [a, b]
(non-deterministic)



Handling Timed Under Determination

I We want to analyze the behavior of a complex network of
such under-determined timed components

I The product of the duration intervals associated with each
process form the duration space

I We can choose a nominal value for each duration, simulate
and see what happens

I We can try to compute for all possible values (verification of
timed automata a-la UPPAAL, IF)

I We can sample under some probabilistic assumptions

I We can even try to compute expected behavior in a
piecewise-analytic manner



The Message of this Talk

I Under-determined dynamical systems: systems where not all
the details have been filled out

I Systems that need additional information in order to produce
a simulation trace

I This information is taken from some uncertainty space

I We make distinction between static (punctual) and dynamic
under-determination

I Simulation, testing, formal verification, monte-carlo,
parameter-space exploration are all different ways to take this
uncertainty into account


