Robust control of timed systems

Patricia Bouyer-Decitre

LSV, CNRS & ENS Cachan, France

Based on joint works with Nicolas Markey, Pierre-Alain Reynier and Ocan Sankur. Acknowledgment to Nicolas and Ocan for slides. Support from ERC project EQualIS.

Outline

1. Introduction

- Robust "black-box" model-checking Parameterized enlarged semantics Parameterized shrunk semantics
- Robust guided model-checking Excess semantics Conservative semantics
- 4. Conclusion

Time-dependent systems

• We are interested in timed systems

Time-dependent systems

• We are interested in timed systems

Reasoning about real-time systems

Timed automata [AD94]

- A timed automaton is made of
 - a finite automaton-based structure

[AD94] Alur, Dill. A Theory of Timed Automata. Theor. Comp. Science, 1994.

Reasoning about real-time systems

Timed automata [AD94]

A timed automaton is made of

- a finite automaton-based structure
- a set of clocks

[AD94] Alur, Dill. A Theory of Timed Automata. Theor. Comp. Science, 1994.

Reasoning about real-time systems

Timed automata [AD94]

A timed automaton is made of

- a finite automaton-based structure
- a set of clocks
- timing constraints on states and transitions

Example (A computer mouse) right_button? left button? right left idle x := 0x := 0x≤300 x<300 x = 300 x = 300left click! right_click! < 300 right_button? left_button? < 300 left double click! right_double_click!

[AD94] Alur, Dill. A Theory of Timed Automata. Theor. Comp. Science, 1994.

...because computers are digital!

...because computers are digital!

...because computers are digital!

...because computers are digital!

...because computers are digital!

...because computers are digital!

...because computers are digital!

... real-time models for real-time systems!

Theorem [AD94]

Reachability in timed automata is decidable (as well as many other important properties).

• Technical tool: region abstraction

Are we doing the right job?

The continuous-time semantics is an idealization of a physical system.

Are we doing the right job?

The continuous-time semantics is an idealization of a physical system.

- It might not be proper for implementation:
 - it assumes zero-delay transitions
 - it assumes infinite precision of the clocks
 - it assumes immediate communication between systems

Are we doing the right job?

The continuous-time semantics is an idealization of a physical system.

- It might not be proper for implementation:
 - it assumes zero-delay transitions
 - it assumes infinite precision of the clocks
 - it assumes immediate communication between systems
- It may generate timing anomalies
Are we doing the right job?

The continuous-time semantics is an idealization of a physical system.

- It might not be proper for implementation:
 - it assumes zero-delay transitions
 - it assumes infinite precision of the clocks
 - it assumes immediate communication between systems
- It may generate timing anomalies
- It does not exclude non-realizable behaviours:
 - not only Zeno behaviours
 - many convergence phenomena are hidden

 \rightsquigarrow this requires infinite precision and might not be realizable

Are we doing the right job?

The continuous-time semantics is an idealization of a physical system.

- It might not be proper for implementation:
 - it assumes zero-delay transitions
 - it assumes infinite precision of the clocks
 - it assumes immediate communication between systems
- It may generate timing anomalies
- It does not exclude non-realizable behaviours:
 - not only Zeno behaviours
 - many convergence phenomena are hidden

 \rightsquigarrow this requires infinite precision and might not be realizable

Important questions

- Is the real system correct when it is proven correct on the model?
- Does actual work transfer to real-world systems? To what extent?

Example 1: Imprecision on clock values

[ACS10] Abdellatif, Combaz, Sifakis. Model-based implementation of real-time applications. Int. Conf. Embedded Software, ACM 2010.

Example 1: Imprecision on clock values

[ACS10] Abdellatif, Combaz, Sifakis. Model-based implementation of real-time applications. Int. Conf. Embedded Software, ACM 2010.

Example 2: Strict timing constraints

[KLL⁺97] Kristoffersen, Laroussinie, Larsen, Pettersson, Yi. A compositional proof of a real-time mutual exclusion protocol. TAPSOFT, 1997.

Example 2: Strict timing constraints

 When P₁ and P₂ run in parallel (sharing variable r), the state where both of them are in □ is not reachable.

[KLL⁺97] Kristoffersen, Laroussinie, Larsen, Pettersson, Yi. A compositional proof of a real-time mutual exclusion protocol. TAPSOFT, 1997.

Example 2: Strict timing constraints

- both of them are in \Box is not reachable.
- This property is lost when $x_{id} > 2$ is replaced with $x_{id} \ge 2$.

[KLL⁺97] Kristoffersen, Laroussinie, Larsen, Pettersson, Yi. A compositional proof of a real-time mutual exclusion protocol. TAPSOFT, 1997.

- Scheduling analysis with timed automata [AAM06]
- **Goal:** analyze a *work-conserving* scheduling policy on given scenarios (no machine is idle if a task is waiting for execution)

Example of a scenario

with the dependency constraints: $A \rightarrow B$ and $C \rightarrow D, E$.

- A, D, E must be scheduled on machine M_1
- **2** B, C must be scheduled on machine M_2
- O starts no sooner than 2 time units

Example of a scenario

 \sim Schedulable in 6 time units

Example of a scenario

- \sim Schedulable in 6 time units
 - Unexpectedly, the duration of A drops to 1.999

Example of a scenario

 \sim Schedulable in 6 time units

• Unexpectedly, the duration of A drops to 1.999

is not work-conserving

Example of a scenario

- \sim Schedulable in 6 time units
 - Unexpectedly, the duration of A drops to 1.999

is not work-conserving

is work-conserving and completes in 7.999 t.u.

Example of a scenario

 \sim Schedulable in 6 time units

• Unexpectedly, the duration of A drops to 1.999

 \rightsquigarrow Standard analysis does not capture this timing anomaly

Example 4: Zeno behaviours

Example 4: Zeno behaviours

[HS11] Herbreteau, Srivathsan. Coarse abstractions make Zeno behaviours difficult to detect, Logic. Meth. Comp. Science, 2011.

Example 4: Zeno behaviours

[HS11] Herbreteau, Srivathsan. Coarse abstractions make Zeno behaviours difficult to detect, Logic. Meth. Comp. Science, 2011.

Introduction

The goal

Add robustness to the theory of timed automata

Add robustness to the theory of timed automata

• We need to understand what is the real system behind the mathematical model, and also which implementation we have in mind, if any.

Add robustness to the theory of timed automata

- We need to understand what is the real system behind the mathematical model, and also which implementation we have in mind, if any.
- Aim: provide frameworks to build

correct systems

Add robustness to the theory of timed automata

- We need to understand what is the real system behind the mathematical model, and also which implementation we have in mind, if any.
- Aim: provide frameworks to build robustly correct systems

Add robustness to the theory of timed automata

- We need to understand what is the real system behind the mathematical model, and also which implementation we have in mind, if any.
- Aim: provide frameworks to build robustly correct systems ~ Robustness calls for specific theories for each application areas
The goal

Add robustness to the theory of timed automata

- We need to understand what is the real system behind the mathematical model, and also which implementation we have in mind, if any.
- Aim: provide frameworks to build robustly correct systems
 ~ Robustness calls for specific theories for each application areas

Rest of the talk

We present a couple of frameworks that have been developed recently in this context

Outline

1. Introduction

2. Robust "black-box" model-checking

Parameterized enlarged semantics Parameterized shrunk semantics

 Robust guided model-checking Excess semantics Conservative semantics

4. Conclusion

Idea

Capture any real (or approximate) behaviours (e.g. the implementation) in the verification process

Idea

Capture any real (or approximate) behaviours (e.g. the implementation) in the verification process

Due to imprecisions,

```
"standard" correctness of \mathcal{A} \Rightarrow correctness of \mathcal{A}_{\texttt{real}}
```

Idea

Capture any real (or approximate) behaviours (e.g. the implementation) in the verification process

Due to imprecisions,

```
"standard" correctness of \mathcal{A} \not\Rightarrow correctness of \mathcal{A}_{real}
```

 \rightsquigarrow We aim at proposing frameworks in which we will ensure the correctness of the real behaviour of the system

Idea

Capture any real (or approximate) behaviours (e.g. the implementation) in the verification process

Due to imprecisions,

```
"standard" correctness of \mathcal{A} \not\Rightarrow correctness of \mathcal{A}_{real}
```

 \rightsquigarrow We aim at proposing frameworks in which we will ensure the correctness of the real behaviour of the system

We describe two such frameworks:

() either we implement \mathcal{A} and we prove:

```
"robust" correctness of \mathcal{A} \ \Rightarrow \  correctness of \mathcal{A}_{\texttt{real}}
```

Idea

Capture any real (or approximate) behaviours (e.g. the implementation) in the verification process

Due to imprecisions,

```
"standard" correctness of \mathcal{A} \not\Rightarrow correctness of \mathcal{A}_{real}
```

 \rightsquigarrow We aim at proposing frameworks in which we will ensure the correctness of the real behaviour of the system

We describe two such frameworks:

 $oldsymbol{0}$ either we implement ${\mathcal A}$ and we prove:

"robust" correctness of $\mathcal{A} \ \Rightarrow \ \mathsf{correctness}$ of $\mathcal{A}_{\mathtt{real}}$

2 or we build and implement \mathcal{B} , and we prove:

 $\begin{array}{rcl} \text{correctness of } \mathcal{A} & \Rightarrow & \text{``robust'' correctness of } \mathcal{B} \\ & \Rightarrow & \text{correctness of } \mathcal{B}_{\texttt{real}} \end{array}$

Outline

1. Introduction

2. Robust "black-box" model-checking Parameterized enlarged semantics

 Robust guided model-checking Excess semantics Conservative semantics

4. Conclusion

Parameterized enlarged semantics for timed automata

A transition can be taken at any time in $[t - \delta; t + \delta]$

Parameterized enlarged semantics for timed automata

A transition can be taken at any time in $[t - \delta; t + \delta]$

Parameterized enlarged semantics – Discussion

What is the relevance of this semantics?

- This is a worst-case approach
- This captures approximate behaviours of the system
- One can define program semantics such that for every $\epsilon > 0$:

$$\mathcal{A} \subseteq \texttt{program}_\epsilon(\mathcal{A}) \subseteq \mathcal{A}_{f(\epsilon)}$$

 $\epsilon:$ parameters of the semantics

Parameterized enlarged semantics – Discussion

What is the relevance of this semantics?

- This is a worst-case approach
- This captures approximate behaviours of the system
- One can define program semantics such that for every $\epsilon > 0$:

$$\mathcal{A} \subseteq \texttt{program}_\epsilon(\mathcal{A}) \subseteq \mathcal{A}_{f(\epsilon)}$$

 ϵ : parameters of the semantics

Methodology

- $\bullet \ \mathsf{Design} \ \mathcal{A}$
- Verify \mathcal{A}_{δ} (better if δ is a parameter)
- $\bullet \ {\rm Implement} \ {\cal A}$

Parameterized enlarged semantics – Discussion

What is the relevance of this semantics?

- This is a worst-case approach
- This captures approximate behaviours of the system
- One can define program semantics such that for every $\epsilon > 0$:

$$\mathcal{A} \subseteq \texttt{program}_\epsilon(\mathcal{A}) \subseteq \mathcal{A}_{f(\epsilon)}$$

 ϵ : parameters of the semantics

Methodology

- $\bullet \ \mathsf{Design} \ \mathcal{A}$
- Verify \mathcal{A}_{δ} (better if δ is a parameter)
- $\bullet \ {\rm Implement} \ {\cal A}$

 \rightsquigarrow This is good for designing systems with simple timing constraints (e.g. equalities).

 \rightsquigarrow It adds extra behaviours, however small may be parameter δ

The (parameterized) robust model-checking problem

It asks whether there is some $\delta_0 > 0$ such that for every $0 \le \delta \le \delta_0$, $\mathcal{A}_{\delta} \models \varphi$.

 \rightsquigarrow It adds extra behaviours, however small may be parameter δ

The (parameterized) robust model-checking problem

It asks whether there is some $\delta_0 > 0$ such that for every $0 \le \delta \le \delta_0$, $\mathcal{A}_{\delta} \models \varphi$.

 $\bullet\,$ When δ is small, truth of φ is independent of $\delta\,$
Parameterized enlarged semantics – Algorithmics

 \rightsquigarrow It adds extra behaviours, however small may be parameter δ

The (parameterized) robust model-checking problem

It asks whether there is some $\delta_0 > 0$ such that for every $0 \le \delta \le \delta_0$, $\mathcal{A}_{\delta} \models \varphi$.

- $\bullet\,$ When δ is small, truth of φ is independent of $\delta\,$
- It can be computed using a simple extension of the region automaton

Parameterized enlarged semantics – Algorithmics

 \rightsquigarrow It adds extra behaviours, however small may be parameter δ

The (parameterized) robust model-checking problem

It asks whether there is some $\delta_0 > 0$ such that for every $0 \le \delta \le \delta_0$, $\mathcal{A}_{\delta} \models \varphi$.

- $\bullet\,$ When δ is small, truth of φ is independent of $\delta\,$
- It can be computed using a simple extension of the region automaton

Theorem

Robust model-checking of reachability, Büchi, LTL, CoflatMTL properties is decidable. Complexities are those of standard non robust model-checking problems.

[Puri00] Puri. Dynamical properties of timed automata. Disc. Event Dyn. Syst., 2000. [DDMR08] De Wulf, Doyen, Markey, Raskin. Robust safety of timed automata. FMSD, 2008. [BMR08] Bouyer, Markey, Reynier. Robust model-checking of timed automata. LATIN, 2006. [BMR08] Bouyer, Markey, Reynier. Robust analysis of timed automata via channel machines. FoSSaCS, 2008.

Outline

1. Introduction

2. Robust "black-box" model-checking Parameterized enlarged semantics Parameterized shrunk semantics

 Robust guided model-checking Excess semantics Conservative semantics

4. Conclusion

A constraint [a, b] is shrunk to $[a + k\delta; b - h\delta]$

A constraint [a, b] is shrunk to $[a + k\delta; b - h\delta]$

Summary of the approach

 \sim Shrink the clock constraints in the model, to prevent additional behaviour in the implementation

• If
$$\mathcal{B} = \mathcal{A}_{-\mathbf{k}\delta}$$
, then

$$\mathcal{B} \subseteq \operatorname{program}_{\epsilon}(\mathcal{B}) \subseteq \mathcal{B}_{f(\epsilon)} = \mathcal{A}_{-\mathbf{k}\delta + f(\epsilon)} \subseteq \mathcal{A}$$

What is the relevance of that approach?

Anticipate imprecisions to prevent additional behaviours in the real-world

What is the relevance of that approach?

Anticipate imprecisions to prevent additional behaviours in the real-world

Methodology

- \bullet Design and verify ${\cal A}$
- Implement $\mathcal{A}_{-\mathbf{k}\delta}$ (parameters are \mathbf{k} and δ)

What is the relevance of that approach?

Anticipate imprecisions to prevent additional behaviours in the real-world

Methodology

- \bullet Design and verify ${\cal A}$
- Implement $\mathcal{A}_{-\mathbf{k}\delta}$ (parameters are \mathbf{k} and δ)

 \rightsquigarrow This is good for designing systems with strong/hard timing constraints

What is the relevance of that approach?

Anticipate imprecisions to prevent additional behaviours in the real-world

Methodology

- \bullet Design and verify ${\cal A}$
- Implement $\mathcal{A}_{-\mathbf{k}\delta}$ (parameters are \mathbf{k} and δ)

A Problem

Make sure that no important behaviours are lost in $\mathcal{A}_{-\mathbf{k}\delta}!!$

Parameterized shrunk semantics – Algorihmics

The (parameterized) shrinkability problem

Find parameters ${\bf k}$ and δ such that:

• $\mathcal{A} \sqsubseteq_{t.a.} \mathcal{A}_{-k\delta}$ (or $\mathcal{F} \sqsubseteq_{t.a.} \mathcal{A}_{-k\delta}$ for some finite automaton \mathcal{F}) [shrinkability w.r.t. untimed simulation]

• $\mathcal{A}_{-\mathbf{k}\delta}$ is non-blocking whenever \mathcal{A} is non-blocking

[shrinkability w.r.t. non-blockingness]

Parameterized shrunk semantics – Algorihmics

The (parameterized) shrinkability problem

Find parameters ${\bf k}$ and δ such that:

- $\mathcal{A} \sqsubseteq_{t.a.} \mathcal{A}_{-k\delta}$ (or $\mathcal{F} \sqsubseteq_{t.a.} \mathcal{A}_{-k\delta}$ for some finite automaton \mathcal{F}) [shrinkability w.r.t. untimed simulation]
- $\mathcal{A}_{-k\delta}$ is non-blocking whenever \mathcal{A} is non-blocking [shrinkability w.r.t. non-blockingness]

Theorem

Parameterized shrinkability can be decided (in exponential time).

- Challenge: take care of the accumulation of perturbations
- Technical tools: parameterized shrunk DBM, max-plus equations
- Tool Shrinktech developed by Ocan Sankur [San13] http://www.lsv.ens-cachan.fr/Software/shrinktech/

The largest shrunk automaton which is correct w.r.t. untimed simulation and non-blockingness is:

Outline

1. Introduction

Robust "black-box" model-checking Parameterized enlarged semantics Parameterized shrunk semantics

3. Robust guided model-checking

Excess semantics Conservative semantics

4. Conclusion

In this talk, a strategy in a timed automaton is a way to resolve (time and action) non-determinism

In this talk, a strategy in a timed automaton is a way to resolve (time and action) non-determinism

Example

In this talk, a strategy in a timed automaton is a way to resolve (time and action) non-determinism

Example

In this talk, a strategy in a timed automaton is a way to resolve (time and action) non-determinism

Example

The second second

- This strategy requires infinite precision
- In practice, when x is close to 2, no additional delay is supported: the run is theoretically infinite, but it is actually blocking

In this talk, a strategy in a timed automaton is a way to resolve (time and action) non-determinism

Example

Strategy: in location O with value x, delay $\frac{2-x}{2}$

- This strategy requires infinite precision
- In practice, when x is close to 2, no additional delay is supported: the run is theoretically infinite, but it is actually blocking
- And that is unavoidable

In this talk, a strategy in a timed automaton is a way to resolve (time and action) non-determinism

Idea

Add robustness to strategies, and adapt the behaviour of the system to previous imprecisions

→ develop a theory of robust strategies that tolerate errors/imprecisions and avoid convergence

Game semantics of a timed automaton

Game semantics $\mathcal{G}_{\delta}(\mathcal{A})$ of timed automaton \mathcal{A} ...

- ... between Controller and Perturbator:
 - from (ℓ, v) , Controller suggests a delay $d \ge \delta$ and a next edge $e = (\ell \xrightarrow{g, Y} \ell')$ that is available after delay d
 - Perturbator then chooses a perturbation $\epsilon \in [-\delta; +\delta]$
 - Next state is $(\ell', (\nu + d + \epsilon)[Y \leftarrow 0])$

Game semantics of a timed automaton

Game semantics $\mathcal{G}_{\delta}(\mathcal{A})$ of timed automaton \mathcal{A} ...

- ... between Controller and Perturbator:
 - from (ℓ, ν) , Controller suggests a delay $d \ge \delta$ and a next edge $e = (\ell \xrightarrow{g, Y} \ell')$ that is available after delay d
 - Perturbator then chooses a perturbation $\epsilon \in [-\delta; +\delta]$
 - Next state is $(\ell', (\nu + d + \epsilon)[Y \leftarrow 0])$

Note: when $\delta = 0$, this is the standard semantics of timed automata.

Game semantics of a timed automaton

Game semantics $\mathcal{G}_{\delta}(\mathcal{A})$ of timed automaton \mathcal{A} ...

... between Controller and Perturbator:

- from (ℓ, ν) , Controller suggests a delay $d \ge \delta$ and a next edge $e = (\ell \xrightarrow{g, Y} \ell')$ that is available after delay d
- Perturbator then chooses a perturbation $\epsilon \in [-\delta; +\delta]$
- Next state is $(\ell', (\nu + d + \epsilon)[Y \leftarrow 0])$

Note: when $\delta = 0$, this is the standard semantics of timed automata.

A δ -robust strategy for Controller is then a strategy that satisfies the expected property, whatever plays Perturbator.

Outline

1. Introduction

 Robust "black-box" model-checking Parameterized enlarged semantics Parameterized shrunk semantics

3. Robust guided model-checking Excess semantics Conservative semantics

4. Conclusion

Constraints may not be satisfied after the perturbation: that is, only v + d should satisfy g

[BMS12] Bouyer, Markey, Sankur. Robust reachability in timed automata: A game-based approach. ICALP, 2012.

Constraints may not be satisfied after the perturbation: that is, only v + d should satisfy g

[BMS12] Bouyer, Markey, Sankur. Robust reachability in timed automata: A game-based approach. ICALP, 2012.

Constraints may not be satisfied after the perturbation: that is, only v + d should satisfy g

Constraints may not be satisfied after the perturbation: that is, only v + d should satisfy g

Constraints may not be satisfied after the perturbation: that is, only v + d should satisfy g

Constraints may not be satisfied after the perturbation: that is, only v + d should satisfy g

→ Allows simple design of constraints, ensures divergence of time, avoids convergence phenomena

The excess game semantics – Algorithmics

The (parameterized) synthesis problem

Synthesize $\delta > 0$ and a δ -robust strategy that achieves a given goal.
The (parameterized) synthesis problem

Synthesize $\delta > 0$ and a $\delta\text{-robust}$ strategy that achieves a given goal.

Two challenges

Accumulation of perturbations:

The (parameterized) synthesis problem

Synthesize $\delta > 0$ and a δ -robust strategy that achieves a given goal.

Two challenges

Accumulation of perturbations:

The (parameterized) synthesis problem

Synthesize $\delta > 0$ and a δ -robust strategy that achieves a given goal.

Two challenges

Accumulation of perturbations:

$$\underbrace{ \overset{x \leq 2}{\overbrace{y:=0}} \underbrace{ \overset{x=2}{\overbrace{1 \leq x-y}} } \\ \underbrace{ \overset{x=2}{\overbrace{1 \leq x-y}} } \\ \underbrace{ \overset{x=2}{\overbrace{1 \leq x-y}} \\ \underbrace{ \overset{x=2}{\overbrace{1 \le x-y}} \\ \underbrace{ \overset{x=2}{\overbrace{1 \le x-y}} \\ \underbrace{ \overset{x=2}{\overbrace{1 \atop x-y}} \\ \underbrace{ \overset{x=2}{\overbrace{1 \atop x-y}} \\ \underbrace{ \underset{x=2}{\overbrace{1 \atop x-y}} \\ \underbrace{ \underset{x=2}{\underset{x=2}} \\ \underbrace{ \underset{x=2}{\underset{x=2}} \\ \underbrace{ \underset{x=2}} \\ \underbrace{ \underset{x=2}{\underset{x=2}} \\ \underbrace{ \underset{x=2}} \atop \underbrace{ \underset{x=2}} \\ \underbrace{ \underset{x=2}} \\ \underbrace{ \underset{x=2}} \\ \underbrace{ \underset{x=2}} \atop \underbrace{ \underset{x=2}} \\ \underbrace{ \underset{x=2}} \atop \underbrace{ \underset{x=2}} \\ \underbrace{ \underset{x=2}} \atop \underbrace{ \underset{x=2}} \\ \underbrace{ \underset{x=2}} \\ \underbrace{ \underset{x=2}} \atop \underbrace{ \underset{x=2}} \\ \underbrace{ \underset{x=2}} \atop \underbrace{ \underset{$$

New regions become reachable

The (parameterized) synthesis problem

Synthesize $\delta > 0$ and a δ -robust strategy that achieves a given goal.

Theorem

The parameterized synthesis problem for reachability properties is decidable and EXPTIME-complete. Furthermore, uniform winning strategies (w.r.t. δ) can be computed.

- Technical tool: a region-based refined game abstraction
- © Extends to two-player games (i.e. to real control problems)
- ② Only valid for reachability properties

Outline

1. Introduction

- Robust "black-box" model-checking Parameterized enlarged semantics Parameterized shrunk semantics
- 3. Robust guided model-checking Excess semantics Conservative semantics
- 4. Conclusion

Constraints have to be satisfied after the perturbation: that is, $v + d + \epsilon$ should satisfy g for every $\epsilon \in [-\delta; +\delta]$

Constraints have to be satisfied after the perturbation: that is, $v + d + \epsilon$ should satisfy g for every $\epsilon \in [-\delta; +\delta]$

[SBMR13] Sankur, Bouyer, Markey, Reynier. Robust Controller Synthesis in Timed Automata. Under submission.

Constraints have to be satisfied after the perturbation: that is, $v + d + \epsilon$ should satisfy g for every $\epsilon \in [-\delta; +\delta]$

→ Strongly ensures timing constraints, ensures divergence of time, prevents converging phenomena

Constraints have to be satisfied after the perturbation: that is, $v + d + \epsilon$ should satisfy g for every $\epsilon \in [-\delta; +\delta]$

→ Strongly ensures timing constraints, ensures divergence of time, prevents converging phenomena

Constraints have to be satisfied after the perturbation: that is, $v + d + \epsilon$ should satisfy g for every $\epsilon \in [-\delta; +\delta]$

→ Strongly ensures timing constraints, ensures divergence of time, prevents converging phenomena

The conservative game semantics – Algorithmics

The (parameterized) synthesis problem

Synthesize $\delta > 0$ and a δ -robust strategy that achieves a given goal.

The conservative game semantics – Algorithmics

The (parameterized) synthesis problem

Synthesize $\delta > 0$ and a δ -robust strategy that achieves a given goal.

Theorem

The synthesis problem for Büchi properties is decidable and PSPACE-complete. Furthermore, δ is at most doubly-exponential, and uniform winning strategies (w.r.t. δ) can be computed.

• A converging phenomena:

• A converging phenomena:

• No convergence:

No such constraining half-spaces.

• A converging phenomena:

No convergence:

No such constraining half-spaces.

Tools for solving the synthesis problem

- Orbit graphs, forgetful cycles [AB11]
- Forgetful (that is, strongly connected) orbit graph ⇔ no convergence phenomena
 → strong relation with thick automata.

A region cycle:

A region cycle:

The corresponding (folded) orbit graph:

The cycle is not forgetful (that is, not strongly connected), Perturbator can enforce convergence:

Outline

1. Introduction

- Robust "black-box" model-checking Parameterized enlarged semantics Parameterized shrunk semantics
- Robust guided model-checking Excess semantics Conservative semantics

4. Conclusion

Conclusion

- Timed automata: a nice mathematical model for real-time systems with interesting decidability properties and algorithmics solutions.
- Not always easy to transfer correctness proven in this model to real behaviours of the system.
- We have shown several frameworks for robustness that can be used to ensure correctness in the real-world..

Conclusion

- Timed automata: a nice mathematical model for real-time systems with interesting decidability properties and algorithmics solutions.
- Not always easy to transfer correctness proven in this model to real behaviours of the system.
- We have shown several frameworks for robustness that can be used to ensure correctness in the real-world..
- Extension of these works to richer models seems unfortunately hard [BMS13]
- A quantitative approach to robustness: Perturbator plays randomly
- Symbolic algorithms?

Conclusion

- Timed automata: a nice mathematical model for real-time systems with interesting decidability properties and algorithmics solutions.
- Not always easy to transfer correctness proven in this model to real behaviours of the system.
- We have shown several frameworks for robustness that can be used to ensure correctness in the real-world..
- Extension of these works to richer models seems unfortunately hard [BMS13]
- A quantitative approach to robustness: Perturbator plays randomly
- Symbolic algorithms?
- This list of possible approaches is not exhaustive:
 - tube acceptance [GHJ97]
 - turn any automaton into a robust one [BLM⁺11]
 - sampling approach [KP05,BLM⁺11]
 - probabilistic approach [BBB⁺08,BBJM12]

• . . .