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Background and Motivation 
• Northeast U.S. Blackout of August 14th, 2003: 55 

million people affected 

• Software bug in energy management system stalled 
alarms in state estimator for over an hour 

• Cyber attacks against the power network control 
center systems pose a real threat to society 



SCADA Systems and  
False-Data Attacks 

• SCADA/EMS used to obtain 
accurate state information to 
identify faulty equipment, 
power flow optimization, 
contingency analysis,… 

•  Redundant power flow and 
voltage measurements (zi) 
currently sent over unencrypted 
communication network 

• How do we strengthen security 
incrementally against attacks 
A1-A3? 

(SCADA/EMS = Supervisory Control and Data Acquisition/Energy Management Systems) 



Attacker Model and  
Bad Data Detection in Control Center 

• Scenario: Attacker injects malicious data a to corrupt 
analog measurements in the power grid 

• First characterize the set of undetectable malicious data a 

 



• Steady-state models: 

 

 

 

• WLS-Estimates of bus phase angles i (in vector    ): 

 

 

 

• Linear DC approximation (¼ML-estimate): 

 

Power Network and Estimator Models 

H :=
@h(x)

@x

¯̄
¯̄
¯
x=0

For example: [Abur and Exposito, 2004] 



Bad-Data Detection and  
Undetectable Attacks 
 

• Bad-Data Detection triggers when residual r is large 

 

• Characterization of undetectable malicious data a: 

  

 

 

• The attacker has a lot of freedom in the choice of a!  

• ak  0 means measurement device k is corrupted. 
Attacker likely to seek sparse solutions a! 

r := z¡ ẑ = z¡Hx̂ = z¡H(HTR¡1H)¡1HTR¡1z

[Liu et al., 2009] 



• Assume attacker wants to make undetectable attack 
against measurement k 

 

 

 

 

• Estimates complexity of “least-effort undetectable 
attack” on measurement k 

• Example: ®1=2 ) undetectable attack against 
measurement 1 involves at least two measurements 

• Non-convex optimization problem. How solve efficiently?  

Security Index k 

®k := min
c
kak0 (sparsest possible attack)

a= Hc (undetectable attack)

ak = 1 (targets measurement k)

[Sandberg, Teixeira, and Johansson, 2010] 



Example of the Index k 

 

 

 

• Sparse attack corresponding to k: 

 

 

• Compare with the “hat matrix”: 

 

 

 

• Hat matrix misleading for judging sparsity of attacks! 



Security Metric k for 40-bus Network  

Attack 33 
(7 measurements) 

• = Current measurement config. 
Ο = Upgraded measurement config. 

At least 7 measurements need to be 

involved in an undetectable attack 

[Teixeira et al.,2011] 



 

 

 

 

 

 

 

 

 

• Attacks of 150 MW (¼55% of nominal value) pass 
undetected in a real system! 

Experiments on KTH SCADA/EMS Testbed 

Bad Data Detected & Removed 

False 
value 

(MW) 

Estimated 
value 

(MW) 

# BDD 
Alarms 

-14.8 -14.8 0 

35.2 36.2 0 

85.2 86.7 0 

135.2 137.5 0 

185.2 Non 
convergent 

- 

[Teixeira et al.,2011] 



Summary so Far 

• Multiple interacting bad data is hard to detect. 
What if attacker exploits this well-known fact? 

• Security index k identifies measurements that 
are relatively “easy” to attack (it locates weak 
spots) 

• Analysis of the hat matrix can be misleading 
for judging the sparsity of possible attacks  

 

• How do we compute ®k, and can we use it for 
protection and mitigation? 



Combinatorial Optimization Problem 

min
 0

H 

 ,: 1H k  subject to 

• Mixed integer linear program (MILP) 
• Combinatorial optimization problem. Expensive! 
• Typical convex heuristics: LASSO (||¢||0 ! ||¢||1) 

• We will exploit structure in H instead:  
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Graph Interpretation 
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2(# arc with flow) 

# node with injection 

 ,: 1H k  

Cost = 22+3 = 7 

Fix two phase angles 

Determine the rest  
to minimize cost 

0
minH  

cost 

(Dii = 1)



Optimal Solution is Binary Vector 

1 

0 
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 0 
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4

Cost = 25+3=13 attacks Cost = 23+4=10 attacks 

Can always construct no worse 0-1 feasible solution 

-2 attacks 

-2 attacks 

+1 attack 

negative->0 

positive->1 

(Dii = 1)

[Sou, Sandberg, and Johansson; 2011] 



Reformulation as Graph Partitioning 

Optimal i are either 0 or 1, for all i 

Consider only partitioning of nodes 

Each cut arc requires 2 attacks 

Each node incident to at least  
one cut arc requires 1 attack 

Pick partition of 
Minimum # cost 

For example 



MIN-CUT Relaxation 

Min cost partitioning difficult; Relaxation: ignore injection cost 

0 0 0
2 T TH DA ADA      

2(# cut arcs) # node with injection 

Partitioning with minimum  
#of cut arcs 

MIN-CUT problem 

Enumerate ALL MIN-CUT  

partitions for best relaxation! 

[Sou, Sandberg, and Johansson; 2011] 



IEEE 14-bus Security Indices 

MIN-CUT incurs no error, LASSO is very bad here 



Large-Scale Examples 

 

 

 

 

 

 

 

• IEEE 300-bus: Exact 6700 sec., LASSO 42.5 sec., MIN-
CUT 0.044 sec.  

• Polish 2383-bus: Exact ¼ 5.7 days, MIN-CUT 30 sec. 
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Protection Against Stealth Attacks 

• Set of protected measurements  

– Cost of protection 

• Protection goals 

– Perfect protection 

 

– Limited budget 

• Max-min 

• Max-ave 

( )C 



min ( ) . . k
P

C s t k   

( )C   



Protection with Limited Budget π 
• Maximize minimum attack cost ®k 

 

 

– Greedy iterative algorithm (MSM) 

• P=0 

• Iterate until  

– Calculate k given P (k=1,…,M) 

– Find most frequently appearing meters in minimal 
attacks corresponding to mink ®k and put in Mj 

– Set  

: ( )
arg max min

M

MM

k
kC P 


 
 

jM  

( )
M

C P 

[Dán and Sandberg, 2010] 



Numerical Results 
• IEEE 14-bus and 118-bus networks 

• Meters on every load and transmission line 

– 54 and 490 measurements 
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Incremental Protection  (IEEE 14-bus) 

• Increase protection budget π=0,1,…,n 
• Perfect protection for π=n=13 

– Incremental deployment efficient 
(compare with random deployment) 



Impact of the Network Layer 
• Optical ground wire topology along transmission lines 

• Attack targets 

– Substation switching equipment 

• Security metrics 

– Substation attack impact (Is) 

• # measurements exposed by substation 

– Measurement attack cost (m) 

• # substations needed to attack measurement 

• Mitigation 

– Routing – single and multipath 

– Encryption – tamper proofness 

– Physical protection, surveillance 



Reroute Physically Correlated 
Measurements (IEEE 118-bus) 

 

[Dán, Sou, and Sandberg, 2011] 



Summary 
• Undetectable false-data attack against power systems 

possible. Verified both in theory and practice 

• Attacks are local, and require basic power systems 
knowledge 

• Why would an attacker do this? 

– Disturb optimal power generation pattern 

– Disturb contingency analysis 

• Security metric ®k defined and computed with MIN-
CUT/MAX-FLOW relaxation 

• Metric ®k used to 

– Allocate limited number of encryption devices 

– Design routing tables that make attacks as hard as possible 


