Selling Random Energy

Kameshwar Poolla
UC Berkeley

May 2011
Co-conspirators

- Eilyan Bitar [Berkeley]
- Ram Rajagopal [Stanford]
- Pramod Khargonekar [Florida]
- Pravin Varaiya [Berkeley]

... and thanks to many useful discussions with: Duncan Callaway, Joe Eto, Shmuel Oren, Felix Wu
Outline

1 Introduction

2 Problem Formulation

3 Analytical Results

4 Empirical Studies

5 Future Directions
Wind is **variable** source of energy:

- **Non-dispatchable** - cannot be controlled on demand
- **Intermittent** - exhibit large fluctuations
- **Uncertain** - difficult to forecast

This is *the* problem! Especially large ramp events

Hourly wind power data from Nordic grid, Feb. 2000 – P. Norgard et al., 2004
Wind Energy: *Status Quo*

Current penetration is modest, but aggressive future targets

- Wind energy is 25% of *added capacity* worldwide in 2009 (40% in US) – surpassing all other energy sources
- *Cumulative wind capacity* has doubled in the last 3 years – growth rate in China ≈ 100%

Almost all wind sold today uses extra-market mechanisms

- Germany – Renewable Energy Source Act
 TSO must buy all offered production at fixed prices
- CA – PIRP program
 end-of-month imbalance accounting + 30% constr *subsidy*
Dealing with Variability

Today:
- Variability absorbed by operating reserves
- All produced wind energy is taken, treated as negative load
- Integration costs are socialized

Tomorrow:
- Deep penetration levels, diversity offers limited help
- Too expensive to take all wind, must curtail
- Too much reserve capacity \implies lose GHG reduction benefits

Today’s approach won’t work tomorrow
Dealing with Variability Tomorrow

At high penetration (> 20%), wind power producer (WPP) will have to assume integration costs [ex: ERCOT]

Consequences:

1. **WPPs participating in conventional markets** [ex: GB, Spain]
2. **WPPs responsible for reserve cost** [ex: procure own reserves (BPA pilot), reserve cost sharing]
3. **Firming strategies** to mitigate financial risk [ex: Ibadrola]
 - energy storage, co-located thermal generation
 - aggregation services
4. **Novel market systems**
 - Intra-day [recourse] markets
 - Novel instruments [ex: interruptible contracts]
Problem Formulation

1. Wind Power Model
2. Market Model
3. Pricing Model
4. Contract Model
5. Contract Sizing Metrics
Wind Power Model

Wind power $w(t)$ is a **stochastic process**

- Marginal CDFs assumed known, $F(w, t) = \mathbb{P}\{w(t) \leq w\}$
- Normalized by **nameplate capacity** so $w(t) \in [0, 1]$

Time-averaged distribution on interval $[t_0, t_f]$

$$F(w) = \frac{1}{T} \int_{t_0}^{t_f} F(w, t)dt$$
Simple Market Model

\[w(t), \text{wind} \]
\[C(t), \text{contract} \]

forward market
\((t = -24 \text{ hrs}) \)

power
\((t = 0) \)

delivery interval

deviation penalty: \(q \)

\(w(t), \text{wind} \)
\(C(t), \text{contract} \)

ex-ante: single forward market
ex-post: penalty for contract deviations

Remarks:
- Offered contracts are piecewise constant on 1 hr blocks
- No energy storage \(\Rightarrow \) no price arbitrage opportunities \(\Rightarrow \) contract sizing decouples between intervals
Simple Pricing Model

Prices ($ per MW-hour)

\[p = \text{ex-ante clearing price in forward market} \]
\[q = \text{ex-post shortfall penalty price} \]

Assumptions:

- Wind power producer (WPP) is a price taker
- Prices \(p \) and \(q \) are fixed and known
 [results easily extend to random prices uncorr with \(w \)]
Metrics of Interest

For a contract C offered on the interval $[t_0, t_f]$, we have

\[
\Pi(C, w) = \int_{t_0}^{t_f} pC - q [C - w(t)]^+ \, dt
\]

\[
\Sigma_-(C, w) = \int_{t_0}^{t_f} [C - w(t)]^+ \, dt
\]

\[
\Sigma_+(C, w) = \int_{t_0}^{t_f} [w(t) - C]^+ \, dt
\]

These are random variables
So we’re interested in their expected values
Many variants
ex: sell spilled wind in AS markets, penalty for overproduction
Taking expectation with respect to w,\[J(C) = \mathbb{E} \Pi(C, w) \]
\[S_-(C) = \mathbb{E} \Sigma_-(C, w) \]
\[S_+(C) = \mathbb{E} \Sigma_+(C, w) \]

Optimal contract maximizes expected profit:\[C^* = \arg \max_{C \geq 0} J(C) \]
Objectives

Theoretical
- Studying effect of wind uncertainty on profitability
- Understanding the role of p and q
- Utility of local generation and storage

Empirical
- Calculating marginal values of storage, local-generation

Bigger picture
- Using studies to design penalty mechanisms to incentivize WPP to limit injected variability
- Dealing with variability at the system level
Related Work

- Botterud et al (2010)
 - Uncertainty in prices using ARIMA models
 - AR models and wind power curves for wind production
 - LP based solution using scenarios for uncertainties
- Pinson et al (2007)
 - Asymmetric penalty structure, quantile formula for optimal bids
- Dent et al (2011)
 - Quantile formula for optimal bids
Main Results

1. Optimal contracts in a single forward market
2. Role of forecasts
3. Role of reserve margins
4. Role of local generation
5. Role of energy storage
6. Optimal contracts with recourse
Theorem

Define the time-averaged distribution

\[F(w) = \frac{1}{T} \int_{t_0}^{t_f} F(w, t) dt \]

The optimal contract \(C^* \) *is given by*

\[C^* = F^{-1}(\gamma) \quad \text{where} \quad \gamma = p/q \]
Theorem

The expected profit, shortfall, and curtailment corresponding to a contract C^* are:

\[
J(C^*) = J^* = qT \int_0^\gamma F^{-1}(w)dw
\]

\[
S_-(C^*) = S_- = T \int_0^\gamma [C^* - F^{-1}(w)] dw
\]

\[
S_+(C^*) = S_+ = T \int_\gamma^1 [F^{-1}(w) - C^*] dw
\]
Graphical Interpretation of Optimal Policy

Price-Penalty Ratio

\[\gamma = \frac{p}{q} \]

Optimal Contract

\[C^* = F^{-1}(\gamma) \]
Graphical Interpretation of Optimal Policy

Profit:
\[J^* = qT \ A_1 \]

Shortfall:
\[S^- = T \ A_2 \]

Curtailment:
\[S^+ = T \ A_3 \]
Graphical Interpretation of Optimal Policy

Profit:

\[J^* = qT \ A_1 \]

Shortfall:

\[S^*_- = T \ A_2 \]

Curtailment:

\[S^*_+ = T \ A_3 \]
Some Intuition ...

Large penalty q, price/penalty ratio $\gamma \approx 0$
- optimal contract ≈ 0
- optimal expected profit ≈ 0
- sell no wind – too much financial risk for deviation

Small penalty q, price/penalty ratio $\gamma \approx 1$
- offered optimal contract $\approx 1 = \text{nameplate}$
- optimal expected profit $= pT\mathbb{E}[W]$
- sell all wind – no financial risk for deviation

Price/penalty ratio γ controls prob of meeting contract, curtailment, variability taken

Result is simple application of Newsboy problem
The Role of Information

\[F(w) = \gamma = 0.5 \]

\[A_1, A_2, C^* \]

ex: 24 hour ahead forecast
The Role of Information

![Graph showing the role of information with areas A1, A2, A3, and C* labeled. The graph illustrates a function F(w) with w (MW generation/capacity) on the x-axis and F(w) on the y-axis, with γ = 0.5.]

ex: 4 hour ahead forecast
Good Forecasts are Valuable

Better information \(\Rightarrow \) larger profit

ex: \(W \sim \) uniform

\[
J^* = \underbrace{pT \mathbb{E}[W]}_{\text{perfect forecast}} - \underbrace{pT \sigma \sqrt{3(1 - \gamma)}}_{\text{loss due to forecast errors}}
\]

loss due to forecast errors is linear in std dev \(\sigma \)

General case:
Can quantify value of information using deviation measures
The Role of Reserve Margins

Reserve Cost = Capacity Cost + Energy Cost

- **Status quo**: added cost of reserve margins for wind is socialized
- With **increased penetration**, WPPs will assume the cost
 - *ex: BPA-Iberdrola-Constellation project*
- Current reserve calculation is deterministic (worst-case)
- Too conservative for wind – reduction in net GHG benefit

Risk-limiting calculation of reserves a natural alternative
Risk-limiting Reserve Margins

Idea: WPP procures reserve margin to cover largest deficit with probability $\geq 1 - \epsilon$

Reserve Calculation

<table>
<thead>
<tr>
<th>ϵ</th>
<th>risk level (LOLP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>contract offered by WPP</td>
</tr>
<tr>
<td>Δ</td>
<td>deficit at time $t = [C - w]^+$</td>
</tr>
<tr>
<td>$R(C, \epsilon)$</td>
<td>reserve margin</td>
</tr>
</tbody>
</table>

\[
R(C, \epsilon) = \min_{R \geq 0} R \quad \text{s.t.} \quad \mathbb{P} \{ R \leq \Delta \} \leq \epsilon
\]

Reserve margin $R(C, \epsilon)$ covers largest deficit with prob $> 1 - \epsilon$
Reserve Margin Pricing

- **Capacity price** q_c
 - *ex ante* capacity payment for keeping reserve on call

- **Energy Price** q_e
 - *ex post* energy payment for deficits $< R(C, \epsilon)$

Augmented penalty fn

Deficit $\Delta = [C - w]^+$

Deviation Penalty $\phi(\Delta, R)$

![Diagram showing deviation penalty function $\phi(\Delta, R)$ with Δ on the x-axis and $\phi(\Delta, R)$ on the y-axis.](image-url)
Optimal Contracts with Reserve Costs

Theorem

The required reserve capacity is

\[R(C, \epsilon) = \left[C - \min_t F^{-1}(\epsilon, t) \right] \]

The optimal contract \(C_R^* \) is

\[C_R^* = F^{-1}(\gamma_R) \quad \text{where} \quad \gamma_R = (p - q_c)/q_e \]
Role of Local Generation

- Can be used to firm wind power
- Large capital costs \Rightarrow need for cost/benefit analysis
- What is profit gain from investment in small local generation?

Marginal values are critical for systems planning!
Local Generation

WPP has small co-located power generation plant

Augmented penalty fn

- Capacity L
- Operational Cost q_L

Expected profit criterion with local generation

$$J_L(C) = \mathbb{E} \int_{t_0}^{t_f} \left(prC - \phi(C - w(t), L) \right) dt$$

- Profit
- Imbalance energy payment
Theorem

The optimal contract C solves

$$p = q_L F(C) + (q - q_L) F(C - L)$$

The marginal value of local generation at the origin is

$$\left. \frac{dJ^*}{dL} \right|_{L=0} = \left(1 - \frac{q_L}{q} \right) p T$$
Energy Storage

WPP has co-located energy storage facility

Questions:

- ex ante Optimal contract with local storage?
- ex post Optimal storage operation policy?
- Impact of storage capacity [capital cost] on profit?

Can be treated as:
finite-horizon constrained stochastic optimal control problem
Energy Storage Model

Model: \[\dot{e}(t) = \alpha e(t) + \eta_{\text{in}} P_{\text{in}}(t) - \frac{1}{\eta_{\text{ext}}} P_{\text{ext}}(t) \]

Constraints:
\[0 \leq e(t) \leq \bar{e} \]
\[0 \leq P_{\text{in}}(t) \leq \bar{P}_{\text{in}} \]
\[0 \leq P_{\text{ext}}(t) \leq \bar{P}_{\text{ext}} \]

Dynamics and constraints are linear
Consider storage system [small capacity ϵ, not lossy]

$w(t)$

ξ: # of events where $w(t)$ crosses C from above

- ξ equivalent to number of energy arbitrage opportunities
- Each arbitrage opportunity gives savings $= q\epsilon$

Marginal value of storage $= q \frac{\eta_{\text{in}}}{\eta_{\text{ext}}} \mathbb{E}[\xi]$
Intra-day Markets

- \(w(t), \text{wind} \)
- \(C(t), \text{contract} \)

\[
\begin{align*}
C_1 & \geq C_2 & \geq C_3 & \cdots & \geq C_N \\
\gamma_1 & \geq \gamma_2 & \geq \gamma_3 & \cdots & \geq \gamma_N \\
p_1 & \geq p_2 & \geq p_3 & \cdots & \geq p_N
\end{align*}
\]

- **ex-ante**: In market \(n \), offer contract \(C_n \) at price \(p_n \)
- **ex-post**: Imbalance deviation penalty from cumulative contract
 \[
 C = \sum_{k=1}^{N} C_k
 \]

Trade-off: decreasing prices, increasing information

Solution: stochastic dynamic programming
Interruptible Power Contracts

Dealing with ramp events

- WPP offers contract with reprieve
- Reprieve must be managed by ISO
- Is this effective? pricing?
Interruptible Power Contracts ...
Wind Power Data

Bonneville Power Authority [BPA]

- Measured aggregate wind power over BPA control area
- Wind sampled every 5 minutes for 639 days

![Graph showing wind power data over time][1]
Empirical Wind Power Model

Empirical autocorrelation $\mathbb{E} w(t)w(t + \tau)$
Empirical Distributions

Empirical CDFs for nine different hours

$\hat{F}_N(w, t)$
Optimal Forward Contracts

- Optimal contracts for $\gamma = [0.3 : 0.9]$
- Consistent with typical wind pattern
- Bigger penalty \Rightarrow smaller contract
Optimal expected profit J^* as a function of γ

Typical numbers
- $p = 50 \ $/MW-hour
- $q = 60 \ $/MW-hour
- Capacity = 160 MW
- ex: $\gamma = \frac{5}{6}$
 - $J^* \approx 28K$ per day

Units: $$/ (q \cdot \text{nameplate capacity})$
Marginal Value of Storage - Empirical

Useful in sizing storage

17-20 MW-Hours/day per 1 MW hour of storage
Future Directions

- Alternative penalty mechanisms that support system flexibility
- Network aspects of wind integration
- Aggregation and profit sharing
- New markets systems: interruptible power contracts