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1 System Definition

We consider a network of n oscillators each characterized by a phase angle θi ∈ S1 (where S denotes the
unit circle) and a distinct natural frequency ωi ∈ R. The oscillator phases evolve according to

d

dt
θi(t) = ωi +

∑n

j=1
aij sin (θj(t)− θi(t)) , (1)

where aij = aji ≥ 0 are symmetric and non-negative coupling weights. The oscillator interactions are
represented by an undirected, connected, and weighted graph G({1, . . . , n}, E,A) induced by the matrix
with elements aij . A particular instance of model (1) is the well known Kuramoto model [9] in which the
graph is complete and the coupling is uniform: aij = K/n for all i, j and some K > 0. We emphasize that
we are interested in heterogeneous natural frequencies since otherwise (1) reduces to a mere gradient flow.

A long-term objective in the study of systems of the form (1) is to understand the conditions under
which frequency synchronization takes place, that is, under which all frequencies θ̇i eventually converge to
a same value. A large number of particular results are available on this topic [1,2,6,11], but the general
problem is considered to be very challenging, and these systems are known to sometimes exhibit sur-
prisingly complex behaviors. We propose here two open problems whose solution could represent major
breakthroughs in the domain as well as in applications. We first need to introduce some additional notions.

Notations, Conventions, and Preliminaries

An angle angle is a point on the unit circle S1. An arc is a connected subset of S1. For two angles
θ1, θ2 ∈ S1, we denote by |θ2 − θ1| the geodesic distance between these two angles, that is, the minimum
of the clockwise and counterclockwise arc length connecting θ1 to θ2. The angular difference θ2 − θ1
is the number in ] − π, π] whose magnitude is equal to |θ2 − θ1|, with positive sign if and only if the
counter-clockwise path length from θ1 to θ2 is smaller than the clockwise path length.

A (frequency-)synchronized trajectory of (1) is one for which θ̇i(t) = ωsync for every i and some
ωsync ∈ R. Due to the symmetry of the coupling terms aij sin(θi − θj), one can easily verify that∑n
i=1 θ̇i(t) =

∑n
i=1 ωi for all t. Therefore, ωsync = 1

n

∑n
i=1 ωi holds for every synchronized trajectory.

Since adding a constant value to all ωi does not affect the synchronization properties of the system, we
assume without loss of generality that 1

n

∑n
i=1 ωi = 0 and thus that ωsync = 0. In particular, synchronized

trajectories are then constant and their analysis reduces to the study of equilibria of (1).
Observe that system (1) is also invariant under a rigid rotation of all angles, in the sense that if σ

and θ are two trajectories for which the initial conditions are related by rotation, σi(0) = rotδ(θi(0)) for
every i, and some angle δ ∈ S1, then σi(t) = rotδ(θi(t)) holds for all i, t. This equality up to a constant
phase difference defines an equivalence relation on the trajectories.
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By an abuse of language, we then say that two trajectories σ, θ approach each other if limt→∞ θi(t)−
σi(t) = δ for some constant phase difference δ. We then say that a trajectory θ is locally attractive if
there exists an open set Θ ∈ Tn (where Tn = S1 × · · · × S1) containing θ(0) such that every trajectory σ
for which σ(0) ∈ Θ approaches θ. This set Θ is called the attraction basin. Similarly, the trajectory is
(almost) globally attractive if trajectories starting at (almost) every initial condition approach θ.

2 Question 1: Existence & Local Stability of Synchronization

The following question is posed in every survey article on synchronization of coupled oscillators [1,2,6,11]:

Question 1. Given an undirected, connected, and weighted graph G({1, . . . , n}, E,A) and natural fre-
quencies ω ∈ Rn satisfying

∑n
i=1 ωi = 0, find a closed form criterion to decide if (a) there exists a

synchronized trajectory, (b) there exists a locally attractive synchronized trajectory.

Recall that a trajectory is synchronous if and only if it satisfies θ̇i = ωsync = 0 for every i, and thus

ωi =
∑n

j=1
aij sin(θi − θj), ∀i ∈ {1, . . . , n} . (2)

Question 1(a) is equivalent to the existence of a solution θ∗ ∈ Tn to the set of algebraic equations (2). It
has proved surprisingly difficult to analyze. Question 1(b) is usually addressed for equilibria satisfying
|θ∗i −θ∗j | < π/2 for all {i, j} ∈ E. In this case, the negative Jacobian of (1) is a Laplacian with nonnegative
weights aij cos(θ∗i − θ∗j ). The local stability question is far from trivial for other classes of equilibria.

Question 1 is not easy to analyze, but several necessary or sufficient conditions have been provided.
For example,

∑n
j=1 aij ≥ ωi is obviously necessary for the equations (2) to admit a solution. Many of the

necessary conditions available in the literature are derived from variations of this inequality [6]. Stronger
results are available in particular cases, e.g., for the densest (complete) and sparsest (acyclic) graphs.

For the Kuramoto model aij = K/n on a complete graph and for natural frequencies in a range
[ωmin, ωmax], the simple necessary condition can be reformulated to K > (ωmax − ωmin)n/(2(n− 1)) [6].
A sufficient and tight condition is K > ωmax−ωmin [5], which is a factor n/(2(n− 1)) from the necessary
condition. An exact condition can be obtained as solution to two implicit nonlinear equations [12].

The second case concerns acyclic networks: Let L be the Laplacian matrix of the graph defined by
Lij = −aij if i 6= j and Lii =

∑n
j=1 aij . When G is acyclic, there exists a locally stable synchronous

trajectory if and only if max(i,j)∈E |[L†ω]i − [L†ω]i| < 1, where L† is the Moore-Penrose pseudo-inverse
of L [7]. This condition appears to be also sufficient for various other topologies. Extensive Monte
Carlo simulations on randomized network topologies, weights, and natural frequencies have shown that
max(i,j)∈E |[L†ω]i − [L†ω]j | ≥ 1 is almost always a sufficient and nearly tight condition. However, rare
counterexamples have been observed, and the condition is in general neither necessary nor sufficient.

3 Question 2: Non-Local Stability Analysis

Question 2. Prove, for some nontrivial class of interactions weights aij and natural frequencies ωi

• (strong version) the existence of an almost globally attractive frequency-synchronized trajectory.

• (weak version) the existence of a semiglobally attractive frequency-synchronized trajectory whose
basin of attraction Θ is spread on a significant part of the state space Sn, that is, a basin of
attraction not included in any of the two following sets:

B := {θ ∈ Sn : (i, j) ∈ E ⇒ |θi − θj | < π/2}
C := {θ ∈ Sn : ∃δ : θi ∈ [δ, π + δ[,∀i}
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Almost all non-local results on synchronization available in the literature involve basins of attraction
that are subsets of the sets B or C, see [6] for a review. For homogeneous natural frequencies, there are
certain notable exceptions, such as the almost global convergence results for the Kuramoto model [10].

In the set B or C the problem becomes more tractable by “cutting the circle manifold into an interval”.
For example, when θ ∈ B the system (1) can be seen as a linear consensus (with time-varying weights)
on the frequencies. Indeed, observe that the frequencies xi(t) = θ̇i(t) satisfy

d

dt
xi(t) =

∑n

j=1
ãij(t)(xj(t)− xi(t)), (3)

with ãij(t) = aij cos(θi(t)−θj(t)). Therefore, as long as θ(t) ∈ B, the weights ãij(t) are non-negative, and

system (3) is a contracting consensus system so that all xi(t) = θ̇i(t) synchronize. Thus, local stability of
a synchronized trajectory can be assured if the set B can be shown to be forward invariant for system (1).

Similarly, observe that as long as θ ∈ C, the angles θi can be mapped onto real numbers θ̃i evolving as

d

dt
θ̃i(t) = ωi +

∑n

j=1
b̃ij(t)

(
θ̃j(t)− θ̃i(t)

)
, (4)

with b̃ij(t) = aij
sin(θ̃j−θ̃i)
θ̃j−θ̃i

≥ 0 being strictly positive if and only if aij is positive. One approach to

establish local stability is again to find conditions under which the system (4) is well defined on the reals
and converges. The requirement that system (4) is well defined on the reals is guaranteed if θ̃(t) ∈ C.

In the above two cases, it is thus possible to perform an analysis similar to one performed on a system
defined on reals. Therefore, we think that finding attraction basins not included in B or C represents an
important challenge, because it requires departing from systems defined on reals, and taking into account
the complexity induced by the fact that the phases live on the circle manifold S. It would thus represent
an important breakthrough in the analysis of oscillator networks.

To conclude this section, we mention two more specific conjectures that would answer Question 2.
Existence and local stability is well understood for complete and acyclic graphs, see the conditions
K > ωmax − ωmin and in Section 2. We conjecture almost global stability in both cases.

Conjecture 1 (Kuramoto model). Consider the Kuramoto model with aij = K/n for all i, j for some K.
If there exists a locally asymptotically stable synchronized trajectory, then it is almost globally attractive.

Conjecture 2 (Acyclic topology). Consider the coupled oscillator model on an acyclic graph G. If there
exists a locally asymptotically stable synchronized trajectory, then it is almost globally attractive.

4 Relevance to Engineering Applications

The above questions are particularly relevant in the context of power network applications. The steady-
state equations (2) of the coupled oscillator model (1) are the active power flow equations in a transmission
network. A dynamic model for a multi-machine power system is given by structure-preserving model [3]

Miθ̈i(t) +Diθi(t) = Pi +
∑n

j=1
bij sin(θj(t)− θi(t)), i ∈ {generators}

Diθi(t) = Pi +
∑n

j=1
bij sin(θj(t)− θi(t)), i ∈ {loads}

(5)

where the state variables θi are the generator rotor angles (at generator buses) and the voltage phase
angles (at load buses), respectively. The inertia and dissipation constant for a generator bus are Mi

and Di > 0, for a load bus Di > 0 is load-frequency coefficient, Pi ∈ R are the active power injections
(positive for generators and negative for loads), and bij are the network susceptances.
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Question 1(a) is directly concerned with feasibility of the power flow equations which is of tremendous
importance for all of power system studies, e.g., feasibility of power flow optimization problems. Question
1(b) concerns the non-singularity and stability of the load flow Jacobian which is of importance in distance
to failure-metrics and numerical algorithms [8]. Question 2 is known as transient stability problem in
power systems, and it is generally considered to be the “holy grail” of power system stability studies [4].
We remark that any local stability result found for a synchronized trajectory first-order coupled oscillator
system (1) immediately implies existence and local stability of the same trajectory for the mixed first-
/second-order system (5), though the basins of attraction may be very different in the two cases, see [5].

Thus, the considered questions are of tremendous importance and have immediate applications in
power network problems. When the coupling terms aij sin(θi−θj) in the coupled oscillator model (1) are
slightly modified to include asymmetric interactions and higher order harmonics, then other immediate
applications of coupled oscillators are in biology, neuroscience, and robotic coordination [1, 2, 6, 11].
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