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Abstract

Monotonicity [5] - a property that requires trajectories to preserve some partial order relation -

strongly restricts the asymptotic behavior of a dynamical system. In fact, (strict) monotonicity

guarantees that almost every trajectory converges to a fixed point [3]. This property is the

fundamental result of the theory of monotone systems. Differential positivity [2] is a recent

generalization of monotonicity. Here, the partial order is allowed to vary from point to point,

that is, it is a partial order with respect to a smooth but not necessarily constant cone field.

We conjecture that almost every trajectory of a (uniformly strictly) differentially positive system

converges to a simple attractor.

A glance into differential positivity

A linear system is positive if there is a (pointed, convex, solid) cone K ⊆ Rn which is forward

invariant for the system trajectories [1]. The trajectories of a linear positive system preserve the

partial order given by K [5]. The trajectories of a nonlinear system are locally ordered if the

system is differentially positive, that is, if the linearized dynamics is positive [2]. Positivity must

be intended in a generalized sense, since the linearized dynamics along the trajectory x(·) lives in

the tangent space Tx(t)X of the system state manifold X . The cone of linear positivity becomes

a (smooth) cone field K(x) ∈ TxX . Given the system ẋ = f(x), the forward invariance property

reads

δx(t0) ∈ K(x(t0)) ⇒ δx(t) ∈ K(x(t)) ∀t ≥ t0 , (1)

where (x(·), δx(·)) is any trajectory of the prolonged system given by the pairing of ẋ = f(x)

and its linearization ˙δx = ∂f(x)δx. Differential positivity coincides with monotonicity when the

state manifold is a vector space and the cone field is constant.

Uniformly strictly differentially positive systems satisfy (1) with the stronger condition that

the boundaries of the cone at x(t) are mapped into the interior of the cone at x(t+T ) uniformly,

for some T > 0, as shown in Figure 1.

The projective contraction of linear positive systems [1] extends to uniformly strictly differ-

entially positive systems [2, Section VI], leading to the characterization of the so-called Perron-

Frobenius vector field w(x) ∈ TxX , a continuous vector field of unit length such that

lim
t→∞

δx(t)

|δx(t)| = w(x(t)) (2)
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Figure 1: Contraction of the cone field along the system trajectories.

for any trajectory (x(·), δx(·)) of the prolonged system whose initial condition δx(t0) ∈ K(x(t0)).

The effect on the system behavior of (2) can be easily gathered by looking at trajectories x(·)
whose vector field f at the initial condition x(t0) satisfies f(x(t0)) ∈ K(x(t0)), |f(x(t0))| 6= 0.

Since d
dtf(x(t)) = ∂f(x(t))f(x(t)), we have that lim

t→∞
f(x(t))
|f(x(t))| = w(x(t)). Thus, asymptotically,

the trajectories of the system merge to a Perron-Frobenius curve, i.e. an integral curves of the

Perron-Frobenius vector field.

Simple and complex behaviors

An appealing property of differential positivity is a characterization of limit sets that is reminis-

cent of Poincaré-Bendixon theorem for planar systems: solutions in a compact invariant set that

does not contain a fixed point must converge to a unique limit cycle.

The essence of that property is a fairly simple geometric argument that shows that any

bounded open forward invariant regionR ⊆ X for which the linearized dynamics remains bounded

contains only simple attractors (fix points, limit cycles, a set of fixed points and connecting arcs

compatible with). In fact, the boundedness of δx(·) and the projective contraction (2) guarantee

that any recurrent set in the state space contracts along the directions transversal to the Perron-

Frobenius vector field.

The situation is more involved for trajectories along which the linearized dynamics are not

bounded. In this case, the Perron-Frobenius vector field w(x(t)) characterizes the direction of

strongest sensitivity, that is, the direction of maximal divergence between x(·) and the neighbor-

ing trajectories. For example, the Perron-Frobenius vector field is everywhere transversal to an

unstable limit cycle and it is tangent to the unstable manifold of a saddle point.

The local information of sensitivity combined with the global information on the shape of the

Perron-Frobenius curves opens the way to the study of basins of attraction. In Figure 2.I, those

curves define a very regular foliation of the attractor A (explored by the unstable trajectory

x(·)). In such a case, any trajectory z(·) from an initial condition z(t0) in the (infinitesimal)

neighborhood of A, z(t0) /∈ A, is forced to move away from A, in accordance with the unstable

direction defined by the Perron-Frobenius vector field, and cannot come back. As a consequence,

the basin of attraction of A is a set of dimension at most n− 1, where n is the dimension of the

state manifold. If A is a chaotic attractor, for example, then from almost every initial condition

the trajectories of the system do not converge to the chaotic attractor.

In general, however, it is difficult to characterize the shape of the Perron-Frobenius curves.

Potentially, they may puncture the attractor at a point, fold, and come back to the attractor

through another point, even without puncturing the attractor (in this last case, the strongest

sensitivity direction is tangent to the attractor). Thus, in general, ruling out attractive chaotic
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Figure 2: [I] The integral curves of the Perron-Frobenius vector field in red define a foliation of
the attractor A. [II] A saddle with two homoclinic orbits. The dashed homoclinic orbit is not
compatible with the local order at the saddle point.

behaviors is an open question. Still, neighboring trajectories must preserve the local order given

by the cone field, which provides a clue on the correctness of the conjecture.

The issue can be illustrated through the analysis of homoclinic orbits, which are at the core of

Smale’s construction of hyperbolic strange attractors [4, pp. 843-852]. The stable and unstable

manifolds of the saddle x∗ in Figure 2.II have dimension 1 and 2, respectively. Because of the

orientation of the Perron-Frobenius vector field at the saddle point (red arrow), the homoclinic

orbit x(·) on the right (dashed) satisfies f(x(t))
|f(x(t))| = w(x(t)) for all t. However, by construction

lim
t→∞

f(x(t))
|f(x(t))| 6= w(x∗), contradicting (2). Indeed, the dashed homoclinic orbit is ruled out by

differential positivity. The homoclinic orbit on the left part of the figure (solid) is instead

compatible with differential positivity. In such a case, however, the Perron-Frobenius vector field

is necessarily nowhere tangent to the curve. Indeed, the solid homoclinic orbit defines a repulsive

set for any neighboring solution. The analysis of the homoclinic orbits suggests that aperiodic

solutions of a strange attractors are compatible with uniform strict differential positivity only if

the Perron-Frobenius vector field is everywhere transversal to the attractor.
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